Article thumbnail

Assessing skin lesion evolution from multispectral image sequences

By Sylvain Prigent, Xavier Descombes, Didier Zugaj, Laurent Petit, Anne-Sophie Dugaret, Philippe Martel and Josiane Zerubia

Abstract

During the evaluation of skin disease treatments, dermatologists have to clinically measure the evolution of the pathology severity of each patient during treatment periods. Such a process is sensitive to intra- and inter- dermatologist diagnosis. To make this severity measurement more objective we quantify the pathology severity using a new image processing based method. We focus on a hyperpigmentation disorder called melasma. During a treatment period, multispectral images are taken on patients receiving the same treatment. After co-registration and segmentation steps, we propose an algorithm to measure the intensity, the size and the homogeneity evolution of the pathological areas. Obtained results are compared with a dermatologist diagnosis using statistical tests on two clinical studies containing respectively 384 images from 16 patients and 352 images from 22 patients.This research report is an update of the report 8136. It describes methods and experiments in more details and provides more references.Lors de l'évaluation des traitements des maladies de peau, les dermatologues doivent mesurer la sévérité de la pathologie de chaque patient tout au long d'une période de traitement. Un tel procédé est sensible aux variations intra- et inter- dermatologues. Pour rendrecette mesure de sévérité plus robuste, nous proposons d'utiliser l'imagerie spectrale. Nous nous concentrons sur une pathologie d'hyperpigmentation cutanée appelée mélasma. Au cours d'une période de traitement, des images multispectrales sont acquises sur une population de patients sous traitement. Après des étapes de recalage des séries temporelles d'images et de classification des régions d'intérêt, nous proposons une méthodologie permettant de mesurer, dans le temps, la variation de contraste, de surface et d'homogénéité de la zone pathologique pour chaque patient. Les résultats obtenus sont comparés à un diagnostique clinique à l'aide de tests statistiques réalisés sur une étude clinique complète.Ce rapport de recherche est un complément du rapport de recherche 8136, afin de compléter la bibliographie, et de décrire plus en détail les méthodes et résultat

Topics: skin, change detection, statistical inference, multispectral, peau, hyperpigmentation, inférence statistique, d'étection de changements, [INFO.INFO-TI] Computer Science [cs]/Image Processing
Publisher: HAL CCSD
Year: 2015
OAI identifier: oai:HAL:hal-01164502v1
Provided by: HAL-UNICE

Suggested articles


To submit an update or takedown request for this paper, please submit an Update/Correction/Removal Request.