Article thumbnail

: École d'été - Analyse géométrique, géométrie des espaces métriques et topologie

By Laurent Mazet, Fanny Bastien and Pauline Martinet

Abstract

In a Riemannian 3-manifold, minimal surfaces are critical points of the area functional and can be a useful tool to understand the geometry and the topology of the ambient manifold. The aim of these lectures is to give some basic definitions about minimal surface theory and present some results about the construction of minimal surfaces in Riemannian 3-manifolds

Topics: summer school 2016, Minimal surface theory, metric geometry, geometric analysis, institut fourier, grenoble, Géométrie des espaces métriques, Analyse géométrique, école d'été 2016, EEM2016, Topology, [MATH]Mathematics [math], [MATH.MATH-MG]Mathematics [math]/Metric Geometry [math.MG]
Publisher: HAL CCSD
Year: 2016
OAI identifier: oai:HAL:medihal-01347250v1
Download PDF:
Sorry, we are unable to provide the full text but you may find it at the following location(s):
  • https://hal.archives-ouvertes.... (external link)
  • https://hal.archives-ouvertes.... (external link)
  • https://hal.archives-ouvertes.... (external link)
  • https://hal.archives-ouvertes.... (external link)
  • https://hal.archives-ouvertes.... (external link)
  • Suggested articles


    To submit an update or takedown request for this paper, please submit an Update/Correction/Removal Request.