Skip to main content
Article thumbnail
Location of Repository

Efficient training algorithms for HMMs using incremental estimation

By Y. Gotoh, M.M. Hochberg and H.F. Silverman


Typically, parameter estimation for a hidden Markov model (HMM) is performed using an expectation-maximization (EM) algorithm with the maximum-likelihood (ML) criterion. The EM algorithm is an iterative scheme that is well-defined and numerically stable, but convergence may require a large number of iterations. For speech recognition systems utilizing large amounts of training material, this results in long training times. This paper presents an incremental estimation approach to speed-up the training of HMMs without any loss of recognition performance. The algorithm selects a subset of data from the training set, updates the model parameters based on the subset, and then iterates the process until convergence of the parameters. The advantage of this approach is a substantial increase in the number of iterations of the EM algorithm per training token, which leads to faster training. In order to achieve reliable estimation from a small fraction of the complete data set at each iteration, two training criteria are studied; ML and maximum a posteriori (MAP) estimation. Experimental results show that the training of the incremental algorithms is substantially faster than the conventional (batch) method and suffers no loss of recognition performance. Furthermore, the incremental MAP based training algorithm improves performance over the batch versio

Publisher: IEEE
Year: 1998
OAI identifier:

Suggested articles

To submit an update or takedown request for this paper, please submit an Update/Correction/Removal Request.