Location of Repository

Nonlocal hydrodynamic influence on the dynamic contact angle: Slip models versus experiment

By M. C. T. Wilson, J. L. Summers, Y. D. Shikhmurzaev, A. Clarke and T. D. Blake


Experiments reported by Blake et al. [Phys. Fluids. 11, 1995 (1999)] suggest that the dynamic contact angle formed between the free surface of a liquid and a moving solid boundary at a fixed contact-line speed depends on the flow field/geometry near the moving contact line. The present paper examines quantitatively whether or not it is possible to attribute this effect to bending of the free surface due to hydrodynamic stresses acting upon it and hence interpret the results in terms of the so-called ``apparent'' contact angle. It is shown that this is not the case. Numerical analysis of the problem demonstrates that, at the spatial \ud resolution reported in the experiments, the variations of the ``apparent'' contact angle (defined in two different ways) caused by variations in the flow field, at a fixed contact-line speed, are too small to account for the observed effect. The results clearly indicate that the actual (macroscopic) dynamic contact angle, i.e.\ the one used in fluid mechanics as a boundary condition for the equation determining the free surface shape, must be regarded as dependent not only on the contact-line speed but also on the flow field/geometry in the vicinity of the moving contact line

Publisher: American Physical Society
Year: 2006
OAI identifier: oai:eprints.whiterose.ac.uk:3652

Suggested articles


To submit an update or takedown request for this paper, please submit an Update/Correction/Removal Request.