Location of Repository

Numerical modeling of semisolid flow under processing conditions

By D.H. Kirkwood and P.J. Ward

Abstract

During the industrial process of Semisolid Forming (or Thixoforming) of alloy slurries, typically the operation of die filling takes around 0.1s. During this time period the alloy slug is transformed from a solid-like structure capable of maintaining its shape, into a liquid-like slurry able to fill a complex die cavity: this involves a decrease in viscosity of some 6 orders of magnitude. Many attempts to measure thixotropic breakdown experimentally in alloy slurries have relied on the use of concentric cylindrical viscometers in which viscosity changes have been followed after shear rate changes over times above 1s to in excess of 1000s, which have little relevance to actual processing conditions and therefore to modeling of flow in industrial practice. The present paper is an attempt to abstract thixotropic breakdown rates from rapid compression tests between parallel plates moving together at velocities of around 1m/s, similar to industrial conditions. From this analysis, a model of slurry flow has been developed in which rapid thixotropic breakdown of the slurry occurs at high shear rates

Publisher: Stahleisen GMBH
Year: 2004
OAI identifier: oai:eprints.whiterose.ac.uk:4691

Suggested articles

Preview


To submit an update or takedown request for this paper, please submit an Update/Correction/Removal Request.