Location of Repository

Development of a friction energy capacity approach to predict the surface coating endurance under complex oscillating sliding conditions

By T. Liskiewicz and S. Fouvry

Abstract

In the case of surface coatings application it is crucial to establish when the substrate is reached to prevent catastrophic consequences. In this study, a model based on local dissipated energy is developed and related to the friction process. Indeed, the friction dissipated energy is a unique parameter that takes into account the major loading variables which are the pressure, sliding distance and the friction coefficient. To illustrate the approach a sphere/plane (Alumina/TiC) contact is studied under gross slip fretting regime. Considering the contact area extension, the wear depth evolution can be predicted from the cumulated dissipated energy density. Nevertheless, some difference is observed between the predicted and detected surface coating endurance. This has been explained by a coating spalling phenomenon observed below a critical residual coating thickness. Introducing an effective wear coating parameter, the coating endurance is better quantified and finally an effective energy density threshold, associated to a friction energy capacity approach, is introduced to rationalize the coating endurance prediction. The surface treatment lifetime is then simply deduced from an energy ratio between this specific energy capacity and a mean energy density dissipated per fretting cycle. The stability of this approach has been validated under constant and variable sliding conditions and illustrated through an Energy Density–Coating Endurance char

Publisher: Elsevier
Year: 2005
OAI identifier: oai:eprints.whiterose.ac.uk:4941

Suggested articles

Preview


To submit an update or takedown request for this paper, please submit an Update/Correction/Removal Request.