Skip to main content
Article thumbnail
Location of Repository

Steady non-ideal detonations in cylindrical sticks of expolsives

By G.J. Sharpe and M. Braithwaite


Numerical simulations of detonations in cylindrical rate-sticks of highly\ud non-ideal explosives are performed, using a simple model with a weakly pressure\ud dependent rate law and a pseudo-polytropic equation of state. Some numerical issues\ud with such simulations are investigated, and it is shown that very high resolution\ud (hundreds of points in the reaction zone) are required for highly accurate (converged)\ud solutions. High resolution simulations are then used to investigate the qualitative\ud dependences of the detonation driving zone structure on the diameter and degree of\ud confinement of the explosive charge. The simulation results are used to show that,\ud given the radius of curvature of the shock at the charge axis, the steady detonation\ud speed and the axial solution are accurately predicted by a quasi-one-dimensional\ud theory, even for cases where the detonation propagates at speeds significantly below\ud the Chapman-Jouguet speed. Given reaction rate and equation of state models, this\ud quasi-one-dimensional theory offers a significant improvement to Wood-Kirkwood\ud theories currently used in industry

Publisher: Springer Verlag
Year: 2005
OAI identifier:

Suggested articles

To submit an update or takedown request for this paper, please submit an Update/Correction/Removal Request.