Skip to main content
Article thumbnail
Location of Repository

A moving-mesh finite element method and its\ud application to the numerical solution of phase-change\ud problems

By M.J. Baines, M.E. Hubbard, P.K. Jimack and R. Mahmood

Abstract

A distributed Lagrangian moving-mesh finite element method is applied to problems\ud involving changes of phase. The algorithm uses a distributed conservation principle to de-\ud termine nodal mesh velocities, which are then used to move the nodes. The nodal values are\ud obtained from an ALE (Arbitrary Lagrangian-Eulerian) equation, which represents a gener-\ud alisation of the original algorithm presented in Applied Numerical Mathematics, 54:450–469\ud (2005). Having described the details of the generalised algorithm it is validated on two test\ud cases from the original paper and is then applied to one-phase and, for the first time, two-\ud phase Stefan problems in one and two space dimensions, paying particular attention to the\ud implementation of the interface boundary conditions. Results are presented to demonstrate\ud the accuracy and the effectiveness of the method, including comparisons against analytical\ud solutions where available

Publisher: Global Science Press
Year: 2009
OAI identifier: oai:eprints.whiterose.ac.uk:7947

Suggested articles


To submit an update or takedown request for this paper, please submit an Update/Correction/Removal Request.