Skip to main content
Article thumbnail
Location of Repository

Analysis of the vibrational mode spectrum of a linear chain with spatially exponential properties

By T.M. Michelitsch, G.A. Maugin, A.F. Nowakowski and F.C.G.A. Nicolleau

Abstract

We deduce the dynamic frequency-domain-lattice Green's function of a linear chain with properties (masses and next-neighbor spring constants) of exponential spatial dependence. We analyze the system as discrete chain as well as the continuous limiting case which represents an elastic I D exponentially graded material. The discrete model yields closed form expressions for the N x N Green's function for an arbitrary number N = 2,...,infinity of particles of the chain. Utilizing this Green's function yields an explicit expression for the vibrational mode density. Despite of its simplicity the model reflects some characteristics of the dynamics of a I D exponentially graded elastic material. As a special case the well-known expressions for the Green's function and oscillator density of the homogeneous linear chain are contained in the model. The width of the frequency band is determined by the grading parameter which characterizes the exponential spatial dependence of the properties. In the limiting case of large grading parameter, the frequency band is localized around a single finite frequency where the band width tends to zero inversely with the grading parameter. In the continuum limit the discrete Green's function recovers the Green's function of the continuous equation of motion which takes in the time domain the form of a Klein-Gordon equation. (C) 2008 Elsevier Ltd. All rights reserved

Publisher: Elsevier
Year: 2009
OAI identifier: oai:eprints.whiterose.ac.uk:8489

Suggested articles


To submit an update or takedown request for this paper, please submit an Update/Correction/Removal Request.