Location of Repository

Automatic Video Tagging using Content Redundancy

By S. Siersdorfer, J. San Pedro and M. Sanderson

Abstract

The analysis of the leading social video sharing platform\ud YouTube reveals a high amount of redundancy, in the form\ud of videos with overlapping or duplicated content. In this paper, we show that this redundancy can provide useful information about connections between videos. We reveal these links using robust content-based video analysis techniques and exploit them for generating new tag assignments. To this end, we propose different tag propagation methods for automatically obtaining richer video annotations. Our techniques provide the user with additional information about videos, and lead to enhanced feature representations for applications such as automatic data organization and search. Experiments on video clustering and classification as well as a user evaluation demonstrate the viability of our approach

Year: 2009
OAI identifier: oai:eprints.whiterose.ac.uk:9009

Suggested articles

Preview


To submit an update or takedown request for this paper, please submit an Update/Correction/Removal Request.