Control of the switching behavior of ferromagnetic nanowires using magnetostatic interactions

Abstract

Magnetostatic interactions between two end-to-end Permalloy (Ni80Fe20) nanowires have been studied as a function of their separation, end shape, and width. The change in switching field increases as the wires become closer, with deviations from the switching field of an isolated wire of up to 40% observed. The sign of the change depends on the relative magnetization orientation of the two wires, with higher fields for parallel magnetization and lower fields for antiparallel magnetization. A wire end shape has a strong influence, with larger field variations being seen for flat-ended wires than wires with tapered ends. The micromagnetic modeling and experiments performed here were in good qualitative agreement. The experimental control of switching behavior of one nanowire with another was also demonstrated using magnetostatic interactions

    Similar works

    This paper was published in White Rose Research Online.

    Having an issue?

    Is data on this page outdated, violates copyrights or anything else? Report the problem now and we will take corresponding actions after reviewing your request.