Skip to main content
Article thumbnail
Location of Repository

Assessment of the performance of alternative aviation fuel in a modern air-spray combustor (MAC)

By I Uryga-Bugajska, L Ma, M Pourkashanian, E Catalanotti, DJ Borman and C Wilson

Abstract

Recent concerns over energy security and environmental considerations have highlighted the importance of finding alternative aviation fuels. It is expected that coal and biomass derived fuels will fulfil a substantial part of these energy requirements. However, because of the physical and chemical difference in the composition of these fuels, there are potential problems associated with the efficiency and the emissions of the combustion process. Over the past 25 years Computational Fluid Dynamics (CFD) has become increasingly popular with the gas turbine industry as a design tool for establishing and optimising key parameters of systems prior to starting expensive trials. In this paper the performance of a typical aviation fuel, kerosene, an alternative aviation fuel, biofuel and a blend have been examined using CFD modelling. A good knowledge of the kinetics of the reaction of bio aviation fuels at both high and low temperature is necessary to perform reliable simulations of ignition, combustion and emissions in aero-engine. A novel detailed reaction mechanism was used to represent aviation fuel oxidation mechanism. The fuel combustion is calculated using a 3D commercial solver using a mixture fraction/pdf approach. Firstly, the study demonstrates that CFD predictions compare favourably with experimental data obtained by QinetiQ for a Modern Airspray Combustor (MAC) when used with traditional jet fuel (kerosene). Furthermore, the 3D CFD model has been refined to use the laminar flamelet model (LFM) approach that incorporates recently developed chemical reaction mechanisms for the bio-aviation fuel. This has enabled predictions for the bio-aviation fuel to be made. The impact of using the blended fuel has been shown to be very similar in performance to that of the 100% kerosene, confirming that aircraft running on 20% blended fuel should have no significant reduction in performance. It was also found that for the given operating conditions there is a significant reduction in performance when 100% biofuel if used. Additionally, interesting predictions were obtained, related to NOx emissions for the blend and 100% biofuel

Publisher: The American Society of Mechanical Engineers .
Year: 2008
OAI identifier: oai:eprints.whiterose.ac.uk:10310

Suggested articles


To submit an update or takedown request for this paper, please submit an Update/Correction/Removal Request.