Comptage asymptotique et algorithmique d'extensions cubiques relatives


This thesis deals with counting relative cubic extensions. In the first chapter we describe a joint work with Henri Cohen. Let k be a number field. We give an asymptotic formula for the number of isomorphism classes of cubic extensions L/k such that the Galois closure of L/k contains a fixed quadratic extension K_2/k. The main tool is Kummer theory. In the second chapter, we suppose k to be an imaginary quadratic number field (with class number 1) and we describe an algorithm for listing all isomorphism classes of cubic extensions L/k up to a bound X on the norm of the relative discriminant ideal.Cette thèse traite du comptage d'extensions cubiques relatives. Dans le premier chapitre on traite un travail commun avec Henri Cohen. Soit k un corps de nombres. On donne une formule asymptotique pour le nombre de classes d'isomorphisme d'extensions cubiques L/k telles que la clôture galoisienne de L/k contienne une extension quadratique fixée K_2/k. L'outil principal est la théorie de Kummer. Dans le second chapitre, on suppose k un corps quadratique imaginaire (avec nombre de classes 1) et on décrit un algorithme pour énumerer toutes les classes d'isomorphisme d'extensions cubiques L/k jusqu'à une certaine borne X sur la norme du discriminant relatif

Similar works

Full text


INRIA a CCSD electronic archive server

Provided original full text link
oaioai:HAL:tel-00525320v1Last time updated on 11/9/2016

This paper was published in INRIA a CCSD electronic archive server.

Having an issue?

Is data on this page outdated, violates copyrights or anything else? Report the problem now and we will take corresponding actions after reviewing your request.