Article thumbnail

Classification, landing distribution, and associated flight parameters for a bomb field emplaced during a single major explosion at Stromboli, Italy

By Lucia Gurioli, Andrew J.L. Harris, L. Colò, J. Bernard, M. Favalli, M. Ripepe and D. Andronico

Abstract

International audienceWe propose a novel approach to studying a ballistic bomb deposit. Favorable circumstances, a unique dispersal axis, an operational thermal video camera, and application of an innovative methodology allowed estimates of volume and mass erupted, and definition of mass partitioning between bombs of various sizes. This allowed the creation of a multidisciplinary database for a single major explosion at Stromboli volcano (Italy), the type locality of Strombolian eruptions. The dispersion and direction of the deposit were consistent with a major explosion on 21 January 2010. Field data comprised 780 mapped bomb locations and sizes, and were organized into a GIS with a lidar-derived digital elevation model as its base. This allowed us to define the landing distribution and flight parameters for erupted bombs. The data defined discontinuous deposition to build a cluster-dominated bomb field, with a total deposit volume of ∼10 m3, a mass of ∼2 × 104 kg, and a grain size dominated by large bombs (1 m in diameter). The parameters defined here for a major eruption at Stromboli show that the Strombolian style of volcanism, and its deposits, need to be treated carefully, and a different approach is needed in the future to truly characterize and classify such small (but globally common) explosive eruptions. The recognition that sedimentation from such eruptions will be uneven leads to the important conclusion that isopachs and isopleths cannot be used to estimate eruption volumes for such explosions

Topics: [SDU.STU.GP]Sciences of the Universe [physics]/Earth Sciences/Geophysics [physics.geo-ph], [PHYS.PHYS.PHYS-GEO-PH]Physics [physics]/Physics [physics]/Geophysics [physics.geo-ph], [SDU.STU.VO]Sciences of the Universe [physics]/Earth Sciences/Volcanology, [SDE.MCG]Environmental Sciences/Global Changes
Publisher: 'Geological Society of America'
Year: 2013
DOI identifier: 10.1130/G33967.1
OAI identifier: oai:HAL:hal-00992840v1
Download PDF:
Sorry, we are unable to provide the full text but you may find it at the following location(s):
  • https://hal.archives-ouvertes.... (external link)
  • https://hal.archives-ouvertes.... (external link)
  • https://hal.archives-ouvertes.... (external link)
  • Suggested articles


    To submit an update or takedown request for this paper, please submit an Update/Correction/Removal Request.