Skip to main content
Article thumbnail
Location of Repository

Sextonians and the magic square

By Bruce Westbury


Associated to any complex simple Lie algebra is a non-reductive complex Lie algebra which we call the intermediate Lie algebra. We propose that these algebras can be included in both the magic square and the magic triangle to give an additional row and column. The extra row and column in the magic square correspond to the sextonions. This is a six-dimensional subalgebra of the split octonions which contains the split quaternions

Topics: QA
Publisher: Cambridge University Press
Year: 2006
OAI identifier:

Suggested articles


  1. (1999). A cubic Dirac operator and the emergence of Euler number multiplets of representations for equal rank subgroups’, doi
  2. (1991). A generalized Berele–Schensted algorithm and conjectured Young tableaux for intermediate symplectic groups’, doi
  3. (1994). A translation of Current problems in mathematics.
  4. (2003). Construction of Lie superalgebras D(2,1;α),G (3) and F(4) from some triple systems’, doi
  5. (1999). Higher-dimensional origin of d =3c o s e t symmetries’, Preprint,
  6. (1985). Infinite-dimensional Lie algebras, 2nd edn doi
  7. (1993). Intermediate Lie algebras and their finite-dimensional representations,’ doi
  8. (1996). L as ´ erie exceptionnelle de groupes de Lie’, C .R .A c a d .S c i .P a r i s
  9. (1996). Lectures on exceptional Lie groups doi
  10. (1994). Les paires duales dans les alg` ebres de Lie r´ eductives’,
  11. (2001). Lie algebras generated by extremal elements’, doi
  12. (2003). Magic squares and matrix models of Lie algebras’, doi
  13. (1997). Minimal representations of exceptional p-adic groups’,
  14. (1983). Octonionic description of exceptional Lie superalgebras’, doi
  15. (1988). Odd symplectic groups’, doi
  16. (1968). On extensions of quaternions’,
  17. (1977). On inner ideals and ad-nilpotent elements of Lie algebras’, doi
  18. (1974). On maximal subalgebras’, doi
  19. (1999). On odd symplectic Schur functions’, doi
  20. (2002). On the exceptional series, and its descendants’, doi
  21. (2004). Quaternions, octonions and the forms of the exceptional simple classical Lie superalgebras’, doi
  22. (1954). Structure of alternative and Jordan bimodules’, doi
  23. (1970). The automorphism groups of octave algebras’, Doctoral dissertation, Rijksuniversiteit te
  24. (2002). The octonions’, doi
  25. The sextonions and E7 1 ’, Adv. Math.,t oa p p e a r .
  26. (2002). Triality, exceptional Lie algebras and Deligne dimension formulas’, doi

To submit an update or takedown request for this paper, please submit an Update/Correction/Removal Request.