Location of Repository

Deformations of functions and F-manifolds

By Ignacio De Gregorio

Abstract

We study deformations of functions on isolated singularities. A unified proof of the equality of Milnor and Tjurina numbers for functions on isolated complete intersections singularities and space curves is given. As a consequence, the base space of their miniversal deformations is endowed with the structure of an $F$-manifold, and we can prove a conjecture of V. Goryunov, stating that the critical values of the miniversal unfolding of a function on a space curve are generically local coordinates on the base space of the deformation

Topics: QA
Publisher: Cambridge University Press
Year: 2006
OAI identifier: oai:wrap.warwick.ac.uk:693

Suggested articles

Preview

Citations

  1. (1989). Calcul diff´ erentiel et classes caract´ eristiques en g´ eom´ etrie alg´ ebrique’,
  2. (1971). Complexe cotangent et d´ eformations. I, doi
  3. (1972). Complexe cotangent et d´ eformations. II, doi
  4. (1974). Deformations of algebraic varieties with Gm action’,
  5. (1977). Deformations of Cohen–Macaulay schemes of codimension 2 and non-singular deformations of space curves’, doi
  6. (2002). Frobenius manifolds and moduli spaces for singularities, Cambridge Tracts in Math. 151 doi
  7. (2000). Functions on space curves’, doi
  8. (1993). Geometry of 2D topological field theories’, Integrable systems and quantum groups (Montecatini Terme, doi
  9. Hurwitz spaces and Frobenius manifolds’, preprint,
  10. (1991). Hypersurface sections and obstructions (rational surface singularities)’, doi
  11. (1962). Ideals defined by matrices and a certain complex associated with them’, doi
  12. (1984). Isolated singular points on complete intersections, doi
  13. (2001). Milnor number equals Tjurina number for functions on space curves’, doi
  14. Semi-infinite Hodge structures and mirror symmetry for projective spaces’, arXiv:
  15. (2000). Simple functions on space curves’, doi
  16. (1991). Singularities of projections’, Singularity theory (Trieste, doi
  17. (1978). The geometry of the monodromy theorem’,
  18. (1980). The Milnor number and deformations of complex curve singularities’, doi
  19. (1980). Theory of logarithmic differential forms and logarithmic vector fields’, doi
  20. (1999). Weak Frobenius manifolds’, doi

To submit an update or takedown request for this paper, please submit an Update/Correction/Removal Request.