Location of Repository

The Mañé–Conze–Guivarc'h lemma for intermittent maps of the circle \ud

By Ian D. Morris

Abstract

We study the existence of solutions g to the functional inequality f≤g T−g+β, where f is a prescribed continuous function, T is a weakly expanding transformation of the circle having an indifferent fixed point, and β is the maximum ergodic average of f. Using a method due to T. Bousch, we show that continuous solutions g always exist when the Hölder exponent of f is close to 1. In the converse direction, we construct explicit examples of continuous functions f with low Hölder exponent for which no continuous solution g exists. We give sharp estimates on the best possible Hölder regularity of a solution g given the Hölder regularity of f

Topics: QA
Publisher: Cambridge University Press
Year: 2009
OAI identifier: oai:wrap.warwick.ac.uk:695

Suggested articles

Preview

Citations

  1. (1988). A combinatorial application of the maximal ergodic theorem. doi
  2. (1999). A probabilistic approach to intermittency. doi
  3. (2002). Asymptotic height optimization for topical IFS, Tetris heaps, and the finiteness conjecture.
  4. (2002). Cohomology classes of dynamically non-negative Ck functions. doi
  5. (1993). Croissance des sommes ergodiques.
  6. (2004). Decay of correlations for piecewise smooth maps with indifferent fixed points. doi
  7. (2001). Geometric barycentres of invariant measures for circle maps. doi
  8. (2003). Gibbs measures at temperature zero. doi
  9. (1999). Homological inequalities for finite topological Markov chains. doi
  10. (1985). Infinite horizon autonomous systems with unbounded cost. doi
  11. (2001). La condition de Walters. doi
  12. (2007). Le lemme de Ma˜ n´ e–Conze–Guivarc’h pour les syst` emes amphidynamiques rectifiables. doi
  13. (2000). Le poisson n’a pas d’arˆ etes. doi
  14. (2001). Lyapunov minimizing measures for expanding maps of the circle. doi
  15. (2008). Nouvelle preuve d’un th´ eor` eme de Yuan et Hunt.
  16. (1988). On the Lyapunov exponent of discrete inclusions I.
  17. (1999). Optimal orbits of hyperbolic systems. doi
  18. (1996). Optimal periodic orbits of chaotic systems. doi
  19. (1999). Recurrence times and rates of mixing. doi
  20. (2001). Rotation, entropy and equilibrium states.
  21. (2003). Sub-actions for Anosov diffeomorphisms. Geometric methods in dynamics II. Ast´ erisque 287(xix)
  22. (2003). Sub-actions for weakly hyperbolic one-dimensional systems. doi
  23. Sub-actions for Young towers. doi
  24. (2005). Transitivity of Euclidean extensions of Anosov diffeomorphisms. doi
  25. (2005). Zero temperature limits of Gibbs-equilibrium states for countable alphabet subshifts of finite type. doi

To submit an update or takedown request for this paper, please submit an Update/Correction/Removal Request.