Skip to main content
Article thumbnail
Location of Repository

Iteration of order preserving subhomogeneous maps on a cone

By Marianne Akian, S. Gaubert, Bas Lemmens and Roger D. Nussbaum

Abstract

We investigate the iterative behaviour of continuous order preserving subhomogeneous maps $f: K\,{\rightarrow}\, K$, where $K$ is a polyhedral cone in a finite dimensional vector space. We show that each bounded orbit of $f$ converges to a periodic orbit and, moreover, the period of each periodic point of $f$ is bounded by \[ \beta_N = \max_{q+r+s=N}\frac{N!}{q!r!s!}= \frac{N!}{\big\lfloor\frac{N}{3}\big\rfloor!\big\lfloor\frac{N\,{+}\,1}{3}\big\rfloor! \big\lfloor\frac{N\,{+}\,2}{3}\big\rfloor!}\sim \frac{3^{N+1}\sqrt{3}}{2\pi N}, \] where $N$ is the number of facets of the polyhedral cone. By constructing examples on the standard positive cone in $\mathbb{R}^n$, we show that the upper bound is asymptotically sharp

Topics: QA
Publisher: Cambridge University Press
Year: 2006
OAI identifier: oai:wrap.warwick.ac.uk:711

Suggested articles

Citations

  1. (2003). A .D .B u r b a n k s ,R .D .N u s s b a u mand
  2. (1992). a c c e l l i ,G .C o h e n doi
  3. (1992). Alternative proof of Sine’s theorem on the size of a regular polygon in R k with the ∞-metric. doi
  4. (1989). as. Combinatorics
  5. (2003). From max-plus algebra to nonexpansive mappings: a nonlinear theory for discrete event systems. doi
  6. (1973). Hilbert’s metric and positive contraction mappings in a Banach space. doi
  7. (1976). Introduction to Analytic Number Theory. Undergraduate Texts in Mathematics (Springer-Verlag, doi
  8. (1995). On the existence of cycle times for some nonexpansive maps.
  9. Positive equilibria and convergence in subhomogeneous monotone dynamics.
  10. (1980). Some relations between nonexpansive and order preserving mappings. doi
  11. (2003). Spectral theorem for convex monotone homogeneous maps, and ergodic control. Nonlinear Anal. doi
  12. (1969). The part metric in convex sets. doi
  13. (2004). The Perron–Frobenius theory for homogeneous, monotone functions.
  14. (1936). Verk¨ urzungen und Isometrien.

To submit an update or takedown request for this paper, please submit an Update/Correction/Removal Request.