Location of Repository

Rigidity of hyperbolic sets on surfaces

By A. A. Pinto and D. A. (David A.) Rand

Abstract

Given a hyperbolic invariant set of a diffeomorphism on a surface, it is proved that, if the holonomies are sufficiently smooth, then the diffeomorphism on the hyperbolic invariant set is rigid in the sense that it is C1+ conjugate to a hyperbolic affine model

Topics: QA
Publisher: Cambridge University Press
Year: 2005
OAI identifier: oai:wrap.warwick.ac.uk:738

Suggested articles

Preview

Citations

  1. (1968). Anosov diffeomorphisms’, Topological Dynamics. An International Symposium
  2. Equilibrium states and the ergodic theory of Axiom A diffeomorphisms, doi
  3. (1961). Small denominators. I: On the mapping of a circle into itself’, Investijia Akad.

To submit an update or takedown request for this paper, please submit an Update/Correction/Removal Request.