Skip to main content
Article thumbnail
Location of Repository

Operads and Γ-homology of commutative rings

By Alan (C. Alan) Robinson and Sarah Ann Whitehouse


We introduce Γ-homology, the natural homology theory for E[infty infinity]-algebras, and a cyclic version of it. Γ-homology specializes to a new homology theory for discrete commutative rings, very different in general from André–Quillen homology. We prove its general properties, including at base change and transitivity theorems. We give an explicit bicomplex for the Γ-homology of a discrete algebra, and elucidate connections with stable homotopy theory

Topics: QA
Publisher: Cambridge University Press
Year: 2002
OAI identifier:

Suggested articles


  1. (1994). (Co)homology of commutative algebras and some related representations of the symmetric group.
  2. (1978). A spectral sequence for the homology of an in delooping. doi
  3. (2000). Andr e{Quillen (co-)homology for simplicial algebras over simplicial operads. doi
  4. (1999). Andr e{Quillen cohomology of commutative S-algebras. doi
  5. (1974). Categories and cohomology theories. doi
  6. (1962). Commutative algebras and cohomology. doi
  7. (1995). Cyclic operads and cyclic homology,
  8. (1960). El ements de g eom etrie alg ebrique.
  9. (2001). Gamma homology, Lie representations and E1 multiplications (preprint, doi
  10. (1963). Harrison homology, Hochschild homology and triples. doi
  11. (1997). Homological algebra of homotopy algebras. doi
  12. (1962). Homology of iterated loop spaces. doi
  13. (1973). Homotopy invariant algebraic structures on topological spaces. doi
  14. (1978). Homotopy theory of -spaces, doi
  15. (1967). M ethode simpliciale en alg ebre homologique et alg ebre commutative. doi
  16. (1998). Modular operads. doi
  17. (1970). On the (co-)homology of commutative rings, doi
  18. (1989). p erations sur l'homologie cyclique des alg ebres commutatives. doi
  19. (2000). Robinson{Whitehouse complex and stable homotopy. doi
  20. Simplicial structured ring spectra (available at ~pgoerss).
  21. (2001). The integral tree representation of the symmetric group.
  22. (1996). The tree representation of n+1. doi

To submit an update or takedown request for this paper, please submit an Update/Correction/Removal Request.