Location of Repository

The moduli space of (111)-polarized abelian surfaces is unirational

By M. W. Gross and Sorin Popescu

Abstract

We prove that the moduli space $\cal A$11lev of <$>(1,11)-polarized Abelian surfaces with level structure of canonical type is birational to Klein's cubic hypersurface in P4. Therefore, $\cal A$11lev is unirational but not rational, and there are no Γ11-cusp forms of weight 3. The same methods also provide an easy proof of the rationality of $\cal A$9lev

Topics: QA
Publisher: Cambridge University Press
Year: 2001
OAI identifier: oai:wrap.warwick.ac.uk:817

Suggested articles

Preview

Citations

  1. (1981). A system for computation in algebraic geometry and commutative algebra Source and object code available for Unix and Macintosh computers. Contact the authors, or download from ftp://math.harvard.edu via anonymous ftp.
  2. (1996). Appendices to ModuliofAbelianVarieties,Lecture Notes
  3. (1992). Invariants of PSL2 acting
  4. (1999). Invariants of SL2 acting on C n, q 2n 1, In: The Eightfold Way: The beauty of the Klein Quartic,
  5. (1992). Modular correspondences on X doi
  6. (1996). Moduli of Abelian Varieties, doi
  7. (1978). On the automorphism group of a certain cubic threefold, doi
  8. (1993). Quadratic equations for level-3 Abelian surfaces, In: Abelian Varieties (Egloffstein, doi
  9. Th.: Quartic surfaceswith 16skew conics,J.ReineAngew.Math.464(1995),
  10. (1994). Th.: Smooth quartic surfaces with 352 conics, doi

To submit an update or takedown request for this paper, please submit an Update/Correction/Removal Request.