Back gating of a two-dimensional hole gas in a SiGe quantum well

Abstract

A device comprising a low-resistivity, n-type, Si substrate as a back gate to a p-type (boron), remote-doped, SiGe quantum well has been fabricated and characterized. Reverse and forward voltage biasing of the gate with respect to the two-dimensional hole gas in the quantum well allows the density of holes to be varied from 8 × 1011 cm–2 down to a measurement-limited value of 4 × 1011 cm–2. This device is used to demonstrate the evolution with decreasing carrier density of a re-entrant insulator state between the integer quantum Hall effect states with filling factors 1 and 3

Similar works

Full text

thumbnail-image

Warwick Research Archives Portal Repository

redirect
Last time updated on 28/06/2012

This paper was published in Warwick Research Archives Portal Repository.

Having an issue?

Is data on this page outdated, violates copyrights or anything else? Report the problem now and we will take corresponding actions after reviewing your request.