Location of Repository

Multivariate extremes at work for portfolio risk measurement

By Eric Bouyé


This paper proposes a methodology to provide risk measures for portfolios during extreme\ud events. The approach is based on splitting the multivariate extreme value distribution of the assets\ud of the portfolio into two parts: the distributions of each asset and their dependence function. The\ud estimation problem is also investigated. Then, stress-testing is applied for market indices portfolios\ud and Monte-Carlo based risk measures — Value-at-Risk and Expected Shortfall — are provided

Topics: HB, QA
Publisher: Warwick Business School Financial Econometrics Research Centre
Year: 2002
OAI identifier: oai:wrap.warwick.ac.uk:1825

Suggested articles



  1. (2000). copulae for Finance - A Reading Guide and Some Applications, Working Paper,
  2. (1991). Modelling extreme multivariate events, doi
  3. (1994). Statistical methods for multivariate extremes: an application to structural design, doi
  4. (1997). Estimating trivariate extremes,
  5. (1978). Caractérisation complète des lois extrêmes multivariées et de la convergence des types extrêmes, Publications de l’Institut de Statistique de l’Université de Paris,
  6. (2000). How to get bounds for distribution convolutions? A simulation study and an application to risk management, GRO Working Paper, Crédit Lyonnais. 19Multivariate Extremes at Work for Portfolio Risk Measurement
  7. (2000). Modelling multivariate extremes Extremes and Integrated doi
  8. (2001). Using Copulae to bound the Value-at-Risk for functions of dependent risk , Working Paper, doi
  9. (1997). Modelling Extremal Events for Insurance and Finance, doi
  10. (1999). Correlation: Pitfalls and Alternatives,
  11. (1999). Correlation and dependency in risk management : properties and pitfalls,
  12. (1994). Modelling of extremal events in insurance, ZOR-Math. doi
  13. (1978). The Asymptotic Theory of Extreme Order Statistics, doi
  14. (1958). Statistics of Extremes, doi
  15. (1960). Distributions des valeurs extrêmes en plusieurs dimensions, Publications de l’Institut de Statistique de l’Université de Paris,
  16. (1996). Multivariate Distributions from Mixtures of Max-Infinitely Divisible Distributions, doi
  17. (1989). Maxima of normal random vectors: Between independence and complete dependence, doi
  18. (1997). Multivariate Models and Dependence Concepts, doi
  19. (1996). The estimation method of inference functions for margins for multivariate models,
  20. (1996). Why Do Markets Move Together? An Investigation of U.S.-Japan Stock Return Comovement, doi
  21. (1996). Statistics for near independence in multivariate extreme values, doi
  22. (1997). Modelling dependence within joint tail regions, doi
  23. (2000). Designing Multivariate Stress Scenarios: An Extreme Value Approach,
  24. (2000). Modelling Dependence with copulae and Applications to Risk Management, Master Thesis, Eidgenössische Technische Hochschule Zürich
  25. (1996). The Asymptotic Distribution of Extreme Stock Market Returns, doi
  26. (2000). From Value at Risk to Stress Testing: The Extreme Value Approach, doi
  27. [1995], Is the Correlation in International Equity Returns Constant: 1960-1990?, doi
  28. (1981). Multivariate extreme value distributions, doi
  29. (1987). Extreme Values, Point Processes and Regular Variation, doi
  30. (1999). Multivariate extremes for models with constant conditional correlations, doi
  31. (1999). Extreme financial returns and their comovements, doi
  32. (1988). Bivariate extreme value theory: models and estimation, doi
  33. (1990). Modelling multivariate extreme value distributions, doi

To submit an update or takedown request for this paper, please submit an Update/Correction/Removal Request.