Location of Repository

Biodegradation of the herbicide mecoprop-p with soil depth and its relationship with class III tfdA genes

By M. Sonia Rodríguez Cruz, Jacob Baelum, Liz J. Shaw, Sebastian R. Sørensen, Shengjing Shi, Thomas J. Aspray, Carsten S. Jacobsen and G. D. Bending

Abstract

Mecoprop-p [(R)-2-(4-chloro-2-methylphenoxy) propanoic acid) is widely used 37 in agriculture and poses an environmental concern because of its susceptibility to leach 38 from soil to water. We investigated the effect of soil depth on mecoprop-p 39 biodegradation and its relationship with the number and diversity of tfdA related genes, 40 which are the most widely known genes involved in degradation of the 41 phenoxyalkanoic acid group of herbicides by bacteria. Mecoprop-p half-life (DT50) was 42 approximately 12 days in soil sampled from <30 cm depth, and increased progressively 43 with soil depth, reaching over 84 days at 70-80 cm. In sub-soil there was a lag period of 44 between 23 and 34 days prior to a phase of rapid degradation. No lag phase occurred in 45 top-soil samples prior to the onset of degradation. The maximum degradation rate was 46 the same in top-soil and sub-soil samples. Although diverse tfdAα and tfdA genes were 47 present prior to mecoprop-p degradation, real time PCR revealed that degradation was 48 associated with proliferation of tfdA genes. The number of tfdA genes and the most 49 probable number of mecoprop-p degrading organisms in soil prior to mecoprop-p 50 addition were below the limit of quantification and detection respectively. Melting 51 curves from the real time PCR analysis showed that prior to mecoprop-p degradation 52 both class I and class III tfdA genes were present in top- and sub-soil samples. However 53 at all soil depths only tfdA class III genes proliferated during degradation. Denaturing 54 gradient gel electrophoresis confirmed that class III tfdA genes were associated with 55 mecoprop-p degradation. Degradation was not associated with the induction of novel 56 tfdA genes in top- or sub-soil samples, and there were no apparent differences in tfdA 57 gene diversity with soil depth prior to or following degradation

Topics: S1, SB
Publisher: Elsevier
Year: 2010
OAI identifier: oai:wrap.warwick.ac.uk:2486

Suggested articles

Preview


To submit an update or takedown request for this paper, please submit an Update/Correction/Removal Request.