Experimental plug&play quantum coin flipping

Abstract

9 pages, 3 figuresPerforming complex cryptographic tasks will be an essential element in future quantum communication networks. These tasks are based on a handful of fundamental primitives, such as coin flipping, where two distrustful parties wish to agree on a randomly generated bit. Although it is known that quantum versions of these primitives can offer information-theoretic security advantages with respect to classical protocols, a demonstration of such an advantage in a practical communication scenario has remained elusive. Here, we experimentally implement a quantum coin flipping protocol that performs strictly better than classically possible over a distance suitable for communication over metropolitan area optical networks. The implementation is based on a practical plug&play system, designed for quantum key distribution. We also show how to combine our protocol with coin flipping protocols that are almost perfectly secure against bounded adversaries, hence enhancing them with a level of information-theoretic security. Our results offer a powerful toolbox for future secure quantum communications

Similar works

Full text

thumbnail-image

Hal-Diderot

redirect
Last time updated on 08/11/2016

This paper was published in Hal-Diderot.

Having an issue?

Is data on this page outdated, violates copyrights or anything else? Report the problem now and we will take corresponding actions after reviewing your request.