Skip to main content
Article thumbnail
Location of Repository

EDS dirigées par des processus stables. Méthode paramétrix pour des estimées de densités et application aux algorithmes stochastiques.

By Lorick Huang

Abstract

First, we study a class of stochastic differential equations driven by a possibly tempered Lévy process, under mild conditions on the coefficients (Hölder continuity). We prove the well-posedness of the associated martingale problem as well as the existence of the density of the solution. Two sided heat kernel estimates are given as well. Our approach is based on the Parametrix series expansion.Then, we consider a stable driven degenerate stochastic differential equation, whose coefficients satisfy a kind of weak Hörmander condition. Under mild smoothness assumptions we prove the uniqueness of the martingale problem for the associated generator under some dimension constraints. Also, when the driving noise is scalar and tempered, we establish density bounds reflecting the multi-scale behavior of the process.Finally, we obtain an expansion of the implicit weak discretization error for the target of stochastic approximation algorithms introduced and studied in [Fri13]. This allows us to extend and develop the Richardson-Romberg extrapolation method for Monte Carlo linear estimator (introduced in [TT90] and deeply studied in [Pag07]) to the framework of stochastic optimization by means of stochastic approximation algorithms. We notably apply the method to the estimation of the quantile of diffusion processes. Numerical results confirm the theoretical analysis and show a significant reduction in the initial computational cost.Dans un premier temps, nous étudions une classe d’équations différentielles stochastiques dirigées par des processus stables (possiblement tempérés), sous des hypothèses de régularité Hölder sur les coefficients. Nous prouvons que le problème de martingale associé est bien posé, établissant ainsi l’unicité faible pour l’EDS. Nous donnons aussi un encadrement de la densité de la solution par celle d’un processus stable (possiblement tempéré). Notre approche est basée sur la méthode parametrix.Dans un second temps, nous considérons une équation différentielle stochastique dégénérée dirigée par un processus stable dont les coefficients satisfont une sorte d’hypothèse de Hörmander faible. Sous de relativement faibles hypothèses de régularité et des restrictions dimensionnelles, nous prouvons que le problème de martingale est bien posé. Nous donnons également un majorant de la densité reflétant le caractère multi-échelle du processus sous-jacent dans le cas scalaire du stable tempéré.Enfin, nous obtenons un développement pour l’erreur de discrétisation de la cible d’un al- gorithme stochastique à la suite de [Fri13]. Ceci nous permet de mettre en place une extrapolation de Richardson-Romberg dans le cadre des algorithmes stochastiques, déjà obtenue pour les estimateurs de Monte Carlo linéaires (introduite par Talay et Tubaro [TT90] et pleinement étudiée dans Pagès [Pag07]). Nous appliquons nos résultats à l’estimation du quantile de la solution d’une EDS dirigée par un processus stable. Les résultats numériques produits à partir de notre méthode montrent uneréduction significative de la complexité

Topics: Density estimates, Parametrix techniques, Stable driven SDEs, Stochastic Algorithm, Estimées de densité, méthode parametrix, EDS dirigées par des processus stables, Algorithmes stochastiques, [ MATH ] Mathematics [math]
Publisher: HAL CCSD
Year: 2015
OAI identifier: oai:HAL:tel-01180708v1
Provided by: Hal-Diderot

Suggested articles


To submit an update or takedown request for this paper, please submit an Update/Correction/Removal Request.