Location of Repository

Design neuer Sensoren unter Berücksichtigung von Strukturaspekten

By Martin Liess

Abstract

This work is a contribution to sensor science and engineering. A mathematical method is introduced to examine sensor structures and examples of application of this method are given. One of them is the analysis of the retinal receptive field structure. The main focus is chapter 4 that presents 4 novel or significantly improved sensor principles, which are based on improved structures. They are - Gas sensors based on the electric field induced migration of chemisorbed gas ions on a sensitive thin film (patent DE 10041263). - Gas sensors based on the effect that the Seebeck voltage between thermocouples with at least one chemical sensitive material depends on the gas environment of that material. - Gas detectors based on photo induced ionisation (PID) where the motion of space charges is controlled by an electric field (patent DE18928903, DE 19838759). - Multidimensional motion sensors that are based on self-mixing of scattered Laser light with the light wave in the cavity of the generating laser diode (patents WO0237124, EP1261877, CN1408064T, US2003016365, EP1261877, WO0237410, US2003160155, WO03032138, WO0237411A1, CN1416554T, EP1334464, US2003006367, WO03102717, US6707027, US2002104957, WO2004021158) In chapter 5 a categorization scheme for sensor structures is presented. The scheme is used to discuss different structural improvements of sensors, in particular those presented in chapter 4.Vorwort und Zusammenfassung Im Hauptteil der vorliegenden Arbeit (Kapitel 4) werden vier verschiedene neu entwickelte oder wesentlich verbesserte Sensorprinzipien vorgestellt. Die Stärke dieser Sensorprinzipien ist deren Struktur, die zu einer verbesserten Nachweisgrenze oder Stabilität führt. Die Struktur eines Sensors (Kapitel 2) Um die Wirkung der Sensorstruktur algemeingültig zu diskutieren wird im zweiten Kapitel ein Modell entwickelt, das Eigenschaften von Sensoren auf deren Struktur zurückführt. Dabei werden alle Sensoreigenschaften allgemein von einer einfachen Gleichung generiert und daraus Schlussfolgerungen für die Eigenschaften der Sensorstruktur gezogen. Es zeigt sich, wie sich der Effekt struktureller Maßnahmen in der Nachweisgrenze niederschlägt, und sich mit der verbesserten Nachweisgrenze die Messunsicherheit (als Funktion aller Eingangsgrößen) parallel verschiebt. Strukturanalyse eines Sensors am Beispiel der Retina (Kapitel 3) Im dritten Kapitel wird das Modell beispielhaft auf das Auge höherer Säugetiere angewandt. In der Einleitung werden die bekannten biologischen Fakten für Ingenieure und Physiker verständlich eingeführt. Darauf folgt eine mathematischen Strukturanalyse der Retina (und Leiterstrukturen allgemein), die als Sensorsystem betrachtet wird. Es zeigt sich, wie die Schwächen der Komponenten (Nervenzellen) der Retina durch deren Struktur kompensiert werden. Sensoren mit verbesserter Struktur (Kapitel 4) 1. Gasmessung mit Hilfe gasempfindlicher Thermopaare Bekannt ist der Gebrauch von Thermopaaren zur Messung von Temperaturunterschieden. In dieser Arbeit wird eine bisher unbekannt gewesene Methode vorgestellt, mit der bei einem konstanten Temperaturunterschied eine Gaskonzentration gemessen wird. Dabei spielt die Abhängigkeit der differentiellen Thermospannung von der Ladungsträgerdichte in sensitiven Materialien eine Rolle. 2. Elektromigration von chemisorbierten Ionen auf einem halbleitenden Film Sensoren basierend auf Widerstandsänderungen von gasempfindlichen Filmen sind seit längerem im Gebrauch. Neu ist, deren aufgrund von Migration veränderliches Widerstandsprofil in Ort und Zeit zu messen und damit Sensoren zu bauen, die unempfindlicher gegen Alterung sind. 3. Modulation von Ionenbewegungen mit Hilfe eines zusätzlichen Gitters im Photoionisationdetektor Zwar sind sowohl Photoionisationsdetektoren (PID's) als auch das Modulationsprinzip an sich bekannt, jedoch ist bis dahin noch kein modulierter PID vorgestellt worden. Entscheidend an der hier eingeführten Innovation ist die Methode, den Photoionisationsstrom zu modulieren, jedoch dem Leckstrom und den äußeren Photostrom an der Kathode unmoduliert zu lassen. Das führt zu einer 20-fachen Verbesserung der Nachweisgrenze. 4. Laserdiodeneigenmischung zur mehrdimensionalen Bewegungsmessung Die Rückwirkung von in die Quelle zurückgestreutem Laserlicht war bisher als Störeffekt bekannt. Um diesen Effekt in einem Bewegungssensor nutzen zu können, mussten Probleme wie Richtungserkennung und Miniaturisierung gelöst werden. Kapitel 5 befasst sich mit Strukturverbesserungen der im vorherigen Kapitel genannten und weiteren Sensoren. Dazu wird eine Strukturschreibweise vorgestellt. Kapitel 6 enthält eine Zusammenfassung und einen Ausblick

Topics: Leiterstruktur, Sensormodell, ddc:620, Chemischer Sensor, Messunsicherheit, Nachweisgrenze, Optischer Sensor, Optoelektronischer Sensor, Sensor, Strukturanalyse
Publisher: Universitätsbibliothek Chemnitz
Year: 2005
OAI identifier: oai:qucosa.de:swb:ch1-200500839

Suggested articles

Preview


To submit an update or takedown request for this paper, please submit an Update/Correction/Removal Request.