research

A STUDY ON THE FUNCTION OF 14-3-3SIGMA IN REGULATING CANCER ENERGY METABOLISM

Abstract

Metabolic reprogramming has been shown to be a major cancer hallmark providing tumor cells with significant advantages for survival, proliferation, growth, metastasis and resistance against anti-cancer therapies. Glycolysis, glutaminolysis and mitochondrial biogenesis are among the most essential cancer metabolic alterations because these pathways provide cancer cells with not only energy but also crucial metabolites to support large-scale biosynthesis, rapid proliferation and tumorigenesis. In this study, we find that 14-3-3σ suppresses all these three metabolic processes by promoting the degradation of their main driver, c-Myc. In fact, 14-3-3s significantly enhances c-Myc poly-ubiquitination and subsequent degradation, reduces c-Myc transcriptional activity, and down-regulates c-Myc-induced metabolic target genes expression. Therefore, 14-3-3σ remarkably blocks glycolysis, decreases glutaminolysis and diminishes mitochondrial mass of cancer cells both in vitro and in vivo, thereby severely suppressing cancer bioenergetics and metabolism. As a result, a high level of 14-3-3σ in tumors is strongly associated with increased breast cancer patients’ overall and metastasis-free survival as well as better clinical outcomes. Thus, this study reveals a new role for 14-3-3s as a significant regulator of cancer bioenergetics and a promising target for the development of anti-cancer metabolism therapies

Similar works

Full text

DigitalCommons@The Texas Medical CenterProvided a free PDF (195.62 KB)

utgsbs_dissertations-1341oai:digitalcommons.library.tmc.edu:utgsbs_dissertations-1341
Last time updated on November 8, 2016

This paper was published in DigitalCommons@The Texas Medical Center.

Having an issue?

Is data on this page outdated, violates copyrights or anything else? Report the problem now and we will take corresponding actions after reviewing your request.