Design of a 16-bit 50-kHz low-power SC delta-sigma modulator for ADC in 0.18um CMOS technology

Abstract

This Master Thesis work aims to design a low power high-resolution Delta-Sigma modulator for ADC in a low-cost standard mixed-mode CMOS technology. For this purpose, a single-bit single loop Delta-Sigma architecture will be selected in order to mitigate distortion issues caused by technology mismatching. Also, the switched capacitor (SC) circuit implementation of the Delta-Sigma modulator will avoid the use of any internal voltage supply bootstrapping for biasing critical switches in favor of extending IC lifetime. The designer will take benefit of the low-power Class-AB OpA general purpose 16 Bits Sigma-Delta modulator ADC for double precision audio 50 kHz bandwidth, targeted for Low-power operation, involving no additional digital circuit compensation, no bootstrapping techniques and resistor-less topologies, and relaying on Switched Capacitor Sigma-Delta modulator topologies for robust operation and insensitivity to process and temperature variations, is presented in this work. Designed in a commercial 180 nm technology, the whole circuit static current is calculated in 620 uA with a nominal voltage supply of 1.8 V, performing a Schreier FOM of 174.16 dB. This outstanding state-of-the-art forseen FOM is achieved by the use of architectural and circuital Low-power techniques. At the architectural level a single loop Low-distortion topology with the optimum order and coefficients have been chosen, while at circuit level very novel OTA based on Variable Mirror Amplifiers allows an efficient Class-AB operation. Specially optimized switched variable mirror amplifiers with a novel design methodology based on Bottom-up approach, allows faster design stages ensuring feasable circuit performance at architectural level without the need of large iterative simulations of the complete SC Sigma-Delta modulator. Simulation results confirms the complete optimization process and the metioned advantages with respect to the tradicional approach

Similar works

Full text

thumbnail-image

UPCommons. Portal del coneixement obert de la UPC

redirect
Last time updated on 31/10/2016

Having an issue?

Is data on this page outdated, violates copyrights or anything else? Report the problem now and we will take corresponding actions after reviewing your request.