Skip to main content
Article thumbnail
Location of Repository

5-Hydroxymethylcytosine Remodeling Precedes Lineage Specification during Differentiation of Human CD4(+) T Cells

By Colm Nestor, Antonio Lentini, Cathrine Hägg Nilsson, Danuta Gawel, Mika Gustafsson, Lina Mattson, Hui Wang, Olof Rundquist, Richard R. Meehan, Bernward Klocke, Martin Seifert, Stefanie M. Hauck, Helmut Laumen, Huan Zhang and Mikael Benson

Abstract

5-methylcytosine (5mC) is converted to 5-hydroxymethylcytosine (5hmC) by the TET family of enzymes as part of a recently discovered active DNA de-methylation pathway. 5hmC plays important roles in regulation of gene expression and differentiation and has been implicated in T cell malignancies and autoimmunity. Here, we report early and widespread 5mC/5hmC remodeling during human CD4(+) T cell differentiation ex vivo at genes and cell-specific enhancers with known T cell function. We observe similar DNA de-methylation in CD4(+) memory T cells in vivo, indicating that early remodeling events persist long term in differentiated cells. Underscoring their important function, 5hmC loci were highly enriched for genetic variants associated with T cell diseases and T-cell-specific chromosomal interactions. Extensive functional validation of 22 risk variants revealed potentially pathogenic mechanisms in diabetes and multiple sclerosis. Our results support 5hmC-mediated DNA de-methylation as a key component of CD4(+) T cell biology in humans, with important implications for gene regulation and lineage commitment.<p>Funding Agencies|Swedish Research Council; Ake Wibergs Foundation; Cancerfonden; Helmholtz Zentrum Munchen; Technische Universitat Munchen; Biotechnology and Biological Sciences Research Council (BBSRC); CEFIC; Medical Research Council (MRC)</p

Topics: Cell and Molecular Biology, Cell- och molekylärbiologi
Publisher: CELL PRESS
Year: 2016
DOI identifier: 10.1016/j.celrep.2016.05.091
OAI identifier: oai:DiVA.org:liu-131186
Download PDF:
Sorry, we are unable to provide the full text but you may find it at the following location(s):
  • http://urn.kb.se/resolve?urn=u... (external link)
  • Suggested articles


    To submit an update or takedown request for this paper, please submit an Update/Correction/Removal Request.