Skip to main content
Article thumbnail
Location of Repository

Reversible acetylation of the chromatin remodelling complex NoRC is required for non-coding RNA-dependent silencing

By Y. Zhou, K. Schmitz, C. Mayer, X. Yuan, A. Akhtar and I. Grummt

Abstract

The SNF2h (sucrose non-fermenting protein 2 homologue)-containing chromatin-remodelling complex NoRC silences a fraction of ribosomal RNA genes (rDNA) by establishing a heterochromatic structure at the rDNA promoter. Here we show that the acetyltransferase MOF (males absent on the first) acetylates TIP5, the largest subunit of NoRC, at a single lysine residue, K633, adjacent to the TIP5 RNA-binding domain, and that the NAD<sup>+</sup>-dependent deacetylase SIRT1 (sirtuin-1) removes the acetyl group from K633. Acetylation regulates the interaction of NoRC with promoter-associated RNA (pRNA), which in turn affects heterochromatin formation, nucleosome positioning and rDNA silencing. Significantly, NoRC acetylation is responsive to the intracellular energy status and fluctuates during S phase. Activation of SIRT1 on glucose deprivation leads to deacetylation of K633, enhanced pRNA binding and an increase in heterochromatic histone marks. These results suggest a mechanism that links the epigenetic state of rDNA to cell metabolism and reveal another layer of epigenetic control that involves post-translational modification of a chromatin remodelling complex

Year: 2009
OAI identifier: oai:escidoc.org:escidoc:2349224
Provided by: MPG.PuRe
Download PDF:
Sorry, we are unable to provide the full text but you may find it at the following location(s):
  • http://hdl.handle.net/11858/00... (external link)
  • Suggested articles


    To submit an update or takedown request for this paper, please submit an Update/Correction/Removal Request.