Modulation of gyrosynchrotron emission in solar and stellar flares by slow magnetoacoustic oscillations

Abstract

Gyrosynchrotron emission generated by non-thermal electrons in solar and stellar coronal flares can be efficiently modulated by slow magnetoacoustic oscillations in the flaring loops. The modulation mechanism is based upon perturbation of the efficiency in the Razin suppression of optically thin gyrosynchrotron emission. Modulation of the emission is in anti-phase with the density perturbation in the slow wave. The observed emission modulation depth can be up to an order of magnitude higher than the slow wave amplitude. This effect is more pronounced at lower frequencies. Observations with spatial resolution, together with analysis of the modulation frequency, are shown to be sufficient for providing the information needed to identify the mode

Similar works

Full text

thumbnail-image

Warwick Research Archives Portal Repository

redirect
Last time updated on 28/06/2012

This paper was published in Warwick Research Archives Portal Repository.

Having an issue?

Is data on this page outdated, violates copyrights or anything else? Report the problem now and we will take corresponding actions after reviewing your request.