Location of Repository

Electron identification in and performance of the ND280 Electromagnetic Calorimeter

By Antony Carver

Abstract

T2K is an off axis neutrino beam experiment with a baseline of 295 km to\ud the far detector, Super-Kamiokande. The near detector, ND280, measures\ud the \ud flux and energy spectra of electron and muon neutrinos in the direction\ud of Super-Kamiokande. An electromagnetic calorimeter constructed from lead\ud and scintillator surrounds the inner detector. Three time projection chambers\ud and two fine grained scintillator detectors sit inside the calorimeter. This\ud thesis describes the development of a particle identification algorithm for the\ud calorimeter and studies how it can enhance a simple electron neutrino analysis.\ud A particle identification algorithm was written for the electromagnetic calorimeter\ud to separate minimally ionising particles, electromagnetic and hadronic\ud showers. A Monte Carlo study suggested that the algorithm produced an\ud electron sample with a relative muon contamination of 10-2 whilst maintaining\ud an electron efficiency of 80%. Data collected at CERN was then used\ud to make comparisons between the Monte Carlo simulation used to train the\ud particle identification, and experimental data. A reasonable agreement was\ud found between the electron data and the Monte Carlo simulation, given that\ud the available calibration framework was still preliminary. Cosmic data agreed\ud well with simulation. The energy resolution of the DsECal for electromagnetic\ud showers was estimated at 9%/√E. An electron neutrino analysis was developed\ud that could be performed on T2K data from the first day of data taking.\ud This analysis anticipated finding 33 +- 10(sys) +- 6(stat) CCQE electron neutrino\ud events and 92 +- 28(sys) +- 10(stat) CCnQE electron neutrino events in\ud the FGD after 12 months of nominal running

Topics: QC
OAI identifier: oai:wrap.warwick.ac.uk:3638

Suggested articles

Preview


To submit an update or takedown request for this paper, please submit an Update/Correction/Removal Request.