Article thumbnail

Novel High-Molecular Weight Fucosylated Milk Oligosaccharides Identified in Dairy Streams

By Raj Mehra, Daniela Barile, Mariarosaria Marotta, Carlitto B. Lebrilla, Caroline Chu and J.Bruce German

Abstract

peer-reviewedOligosaccharides are the third largest component in human milk. This abundance is remarkable because oligosaccharides are not digestible by the newborn, and yet they have been conserved and amplified during evolution. In addition to encouraging the growth of a protective microbiota dominated by bifidobacteria, oligosaccharides have anti-infective activity, preventing pathogens from binding to intestinal cells. Although it would be advantageous adding these valuable molecules to infant milk formula, the technologies to reproduce the variety and complexity of human milk oligosaccharides by enzymatic/organic synthesis are not yet mature. Consequently, there is an enormous interest in alternative sources of these valuable oligosaccharides. Recent research has demonstrated that bovine milk and whey permeate also contain oligosaccharides. Thus, a thorough characterization of oligosaccharides in bovine dairy streams is an important step towards fully assessing their specific functionalities. In this study, bovine milk oligosaccharides (BMOs) were concentrated by membrane filtration from a readily available dairy stream called “mother liquor”, and analyzed by high accuracy MALDI FT-ICR mass spectrometry. The combination of HPLC and accurate mass spectrometry allowed the identification of ideal processing conditions leading to the production of Kg amount of BMO enriched powders. Among the BMOs identified, 18 have high-molecular weight and corresponded in size to the most abundant oligosaccharides present in human milk. Notably 6 oligosaccharides contained fucose, a sugar monomer that is highly abundant in human milk, but is rarely observed in bovine milk. This work shows that dairy streams represent a potential source of complex milk oligosaccharides for commercial development of unique dairy ingredients in functional foods that reproduce the benefits of human milk.This project was supported by the University of California Discovery Program (05GEB01NHB), the National Institute of Environmental Health Sciences (P42ES004699), the National Institutes of Health award R01AT00707, the California Dairy Research Foundation (08 GEB-04 NH) and the CHARGE study (P01 ES11269). The authors acknowledge financial support from the Irish Department of Agriculture, Fisheries and Food through the Food Institutional Research Measure (FIRM–05/R&D/TD/368)

Topics: Bovine Milk Oligosaccharides, Dairy streams, Infant milk formula, Breast milk
Publisher: 'Public Library of Science (PLoS)'
Year: 2014
DOI identifier: 10.1371/journal.pone.0096040
OAI identifier: oai:t-stor.teagasc.ie:11019/718
Provided by: T-Stór

Suggested articles


To submit an update or takedown request for this paper, please submit an Update/Correction/Removal Request.