Location of Repository

Ascorbic acid, lipid peroxidation, and aging

By Brian Evan Leibovitz

Abstract

The role of ascorbic acid with regard to lipid peroxidation and aging has been examined. A thorough literature analysis indicates that free radical-induced lipid peroxidation is a plausible biochemical explanation for aging. Lipid peroxidation causes cellular damage due to altered enzyme activities, error-prone nucleic acid metabolism, and membrane dysfunction, as well as the accumulation of aging pigments in the lysomes. Ascorbic acid, a water soluble free radical quencher, was examined with regard to carbon tetra-chloride-induced lipid peroxidation and in vivo aging. Carbon tetrachloride, a well-known free radical inducer, caused marked increases in the ration of oxidized/reduced vitamin C only in the organs which metabolize carbon tetrachloride to the free radical form. Vitamin C treatment, 250 mg% in the drinking water, reduced the extent of carbon tetrachloride=induced lipid peroxidation. Aging is associated with marked increases in the ration of oxidized/reduced vitamin C in all organs examined with the exception of thymus. In organs exposed to high oxygen tensions, or in those exposed to high levels of free radicals, the ration of oxidized/reduced vitamin C exceeded the in vitro ration, indicating extensive lipid peroxidation. Vitamin C treatment reduced the extent of lipid peroxidation in vivo as determined by the ratio of oxidized/reduced vitamin C

Topics: Aging, Vitamin C, Lipids, Biochemistry, Biology
Publisher: PDXScholar
Year: 1979
OAI identifier: oai:pdxscholar.library.pdx.edu:open_access_etds-3908
Provided by: PDXScholar

Suggested articles

Preview


To submit an update or takedown request for this paper, please submit an Update/Correction/Removal Request.