Location of Repository

Particle-in-cell simulations of electron acceleration by a simple capacitative antenna in collisionless plasma

By M. E. Dieckmann, G. (George) Rowlands, Bengt Eliasson and P. K. Shukla


We examine the electron acceleration by a localized electrostatic potential oscillating at high frequencies by means of particle‐in‐cell (PIC) simulations, in which we apply oscillating electric fields to two neighboring simulation cells. We derive an analytic model for the direct electron heating by the externally driven antenna electric field, and we confirm that it approximates well the electron heating obtained in the simulations. In the simulations, transient waves accelerate electrons in a sheath surrounding the antenna. This increases the Larmor radii of the electrons close to the antenna, and more electrons can reach the antenna location to interact with the externally driven fields. The resulting hot electron sheath is dense enough to support strong waves that produce high‐energy sounder‐accelerated electrons (SAEs) by their nonlinear interaction with the ambient electrons. By increasing the emission amplitudes in our simulations to values that are representative for the ones of the sounder on board the OEDIPUS C (OC) satellites, we obtain electron acceleration into the energy range which is comparable to the 20 keV energies of the SAE observed by the OC mission. The emission also triggers stable electrostatic waves oscillating at frequencies close to the first harmonic of the electron cyclotron frequency. We find this to be an encouraging first step of examining SAE generation with kinetic numerical simulation codes

Topics: QB, QC
Publisher: American Geophysical Union
Year: 2004
OAI identifier: oai:wrap.warwick.ac.uk:3879

Suggested articles



  1. (2001). Antenna-plasma and antenna-spacecraft resistance on the Wind spacecraft, doi
  2. (2001). H u a n g ,C .Y . ,W .J .B u r k e ,D .A .H a r d y doi
  3. (1986). Ionospheric plasma modification in the vicinity of a spacecraft by powerful radio pulses in topside sounding, doi
  4. (1993). Ionospheric wave emissions passively detected by the Oedipus-A tether, doi
  5. (1986). Nonlinear Landau damping of purely perpendicular Bernstein modes, doi
  6. (1999). OEDIPUS-C observations of electrons accelerated by radio frequency fields at whistler-mode frequencies, doi
  7. (2000). Plasma sounding at the upper hybrid frequency, doi
  8. (1990). Resonant heating of the ionospheric plasma by powerful radiopulses aboard the doi
  9. (2004). Simulating thermal noise, doi
  10. (1997). T s u t s u i ,M . ,I .N a g a n o ,H .K o j i m a ,K .H a s h i m o t o ,H .M a t s u m o t o doi
  11. (1999). The energy injection into waves with a zero group velocity, doi
  12. (1991). The virtual particle electromagnetic particle-mesh method, doi

To submit an update or takedown request for this paper, please submit an Update/Correction/Removal Request.