Synthesis of zirconia nanoparticles on carbon nanotubes and their potential for enhancing the fracture toughness of alumina ceramics

Abstract

Nanoparticles of zirconia (ZrO2) were in situ synthesized on the surface of carbon nanotubes by means of liquid phase reactions and a proper heat treatment process. The size of the nanoparticles could be controlled by the amount of zirconium source materials in a solution and its reaction times. In this study, the size of the nanoparticles ranged from several nanometers to twenty nanometers. It was particularly noted that the synthesized zirconia possessed a cubic structure (c-phase) which generally existed as a stable form of zirconia crystals at high temperatures (above 2370 °C) as well as a form of zirconia that could be used for enhancing the fracture toughness of alumina ceramics. Experimental results showed that the mechanical properties of alumina ceramics mixed with in situ synthesized nanoparticles on the surface of carbon nanotubes were much better than that of pristine nanotubes or zirconia nanoparticles alone. The existence of the nanoparticles on the surface of nanotubes results in improving the dispersion and bonding properties of the nanotubes in alumina matrix environment. The fracture toughness of CNT/ZrO2 alumina ceramics was also improved by the mechanism of bridging effect

Similar works

Full text

thumbnail-image

Swinburne Research Bank

redirect
Last time updated on 18/08/2016

This paper was published in Swinburne Research Bank.

Having an issue?

Is data on this page outdated, violates copyrights or anything else? Report the problem now and we will take corresponding actions after reviewing your request.