Location of Repository

Dense small molecule labeling enables activator-dependent STORM by proximity mapping

By Ye Chen, Min Gu, Peter W. Gunning and Sarah M. Russell

Abstract

Stochastic optical reconstruction microscopy (STORM) enables high-resolution imaging, but multi-channel 3D imaging is problematic because of chromatic aberrations and alignment errors. The use of activator-dependent STORM in which spectrally distinct activators can be coupled with a single reporter can circumvent such issues. However, the standard approach of linking activators and reporters to a single antibody molecule is hampered by low labeling density and the large size of the antibody. We proposed that small molecule labels might enable activator-dependent STORM if the reporter or activator were linked to separate small molecules that bound within 3.5 nm of each other. This would greatly increase the labeling density and therefore improve resolution. We tested various mixtures of phalloidin- or mCling-conjugated fluorophore to demonstrate this feasibility. The specific activation was dependent on the choice of activator, its density, a matching activating laser and its power. In addition to providing an effective means of multi-channel 3D STORM imaging, this method also provides information about the local proximity between labels, potentially enabling super-resolved mapping of the conformation of the labeled structures

Topics: Actin, Multi-channel imaging, Single-molecule localization microscopy, Small molecule labels, Super-resolution imaging
Publisher: Springer
Year: 2016
DOI identifier: 10.1007/s00418-016-1451-6
OAI identifier: oai:vtl.cc.swin.edu.au:swin:49199
Download PDF:
Sorry, we are unable to provide the full text but you may find it at the following location(s):
  • http://dx.doi.org/10.1007/s004... (external link)
  • http://hdl.handle.net/1959.3/4... (external link)
  • Suggested articles


    To submit an update or takedown request for this paper, please submit an Update/Correction/Removal Request.