Location of Repository

USE OF DATA MINING AND SPECTRAL PROFILES TO DIFFERENTIATE CONDITION AFTER HARVEST OF COFFEE PLANTS

By Rubens A. C. Lamparelli, Jerry A. Johann, Eder R. dos Santos, Julio C. D. M. Esquerdo and Jansle V. Rocha

Abstract

This study aimed at identifying different conditions of coffee plants after harvesting period, using data mining and spectral behavior profiles from Hyperion/EO1 sensor. The Hyperion image, with spatial resolution of 30 m, was acquired in August 28th, 2008, at the end of the coffee harvest season in the studied area. For pre-processing imaging, atmospheric and signal/noise effect corrections were carried out using Flaash and MNF (Minimum Noise Fraction Transform) algorithms, respectively. Spectral behavior profiles (38) of different coffee varieties were generated from 150 Hyperion bands. The spectral behavior profiles were analyzed by Expectation-Maximization (EM) algorithm considering 2; 3; 4 and 5 clusters. T-test with 5% of significance was used to verify the similarity among the wavelength cluster means. The results demonstrated that it is possible to separate five different clusters, which were comprised by different coffee crop conditions making possible to improve future intervention actions

Topics: crop monitoring, spectral behavior, management, orbital remote sensing
Publisher: Soc Brasil Engenharia Agricola
Year: 2013
OAI identifier: oai:agregador.ibict.br.RI_UNICAMP:oai:unicamp.sibi.usp.br:SBURI/1963
Download PDF:
Sorry, we are unable to provide the full text but you may find it at the following location(s):
  • http://www.rcaap.pt/detail.jsp... (external link)
  • Suggested articles


    To submit an update or takedown request for this paper, please submit an Update/Correction/Removal Request.