Location of Repository

The dual boundary element method (DBEM) incorporating a cohesive zone model to cracks analysis

By Luiz Gustavo de Figueiredo

Abstract

A avaliação da influêcia de um modelo coesivo de fratura no comportamento estrutural e a simulação de propagação de fraturas pré-existentes, com a Mecâica da Fratura Elástica Linear (MFEL), em problemas bidimensionais, usando o Método dos Elementos de Contorno Dual (DBEM), é o principal objetivo deste estudo. Problemas elásticos lineares em meio contínuo podem ser resolvidos com a equação integral de contorno de deslocamentos. O Método dos Elementos de Contorno Dual pode ser utilizado para resolver os problemas de fratura, onde a equação integral de contorno de forças de superfície é implementada em conjunto com a equação integral de contorno de deslocamentos. Elementos contínuos, descontínuos e mistos podem ser usados no contorno. Diferentes estrat?ias de posicionamento dos pontos de colocação são discutidas neste trabalho, onde os fatores de intensidade de tensão são avaliados com ténica de extrapolação de deslocamentos em fraturas existentes dos tipos: borda, inclinada e em forma de ?v?. Um modelo coesivo é utilizado para avaliação de comportamento estrutural de um corpo de prova com fratura de borda segundo diferentes estratégias desenvolvidas: uma análise coesiva geral e uma análise coesiva iterativa, as quais são comparadas com o comportamento não coesivo. A força normal coesiva relaciona-se com o valor da abertura de fratura na direção normal na lei constitutiva na Zona de Processos Coesivos (ZPC). A simulação de propagação de uma fratura de borda existente e sua implementa?o num?ica no DBEM, sob deslocamento imposto, é realizada utilizando o critério da mínima tensão circunferencial. Palavras-chave: Método dos Elementos de Contorno; Métodos dos Elementos de Contorno Dual; Mecânica da Fratura Elástica Linear; Modelos Coesivos; Propagação de FraturasAn evaluation of the effect of the cohesive fracture model on the structural behavior and the crack propagation in pre-existing cracks with the Linear Elastic Fracture Mechanics (LEFM), for two dimensional problems, using the Dual Boundary Element Method (DBEM), is the main purpose of the present study. Linear elastic problems in continuum media can be solved with the boundary integral equation for displacements. The Dual Boundary Element Method can be used to solve fracture problems, where the traction boundary integral equation is employed beyond the displacement boundary integral equation. Conformal and non-conformal interpolations can be employed on the boundary. Different strategies for positioning the collocation points are discussed in this work, where the stress intensity factors are evaluated with the displacement extrapolation method to an existing single edge crack, central slant crack and central kinked crack. A cohesive model is used to evaluate the structural behavior of the specimen with a single edge crack under different strategies: a general cohesive analysis and an iterative cohesive analysis; which are compared with the non-cohesive behavior. The normal cohesive force is dependent of the crack opening value in the normal direction in the constitutive law of the Cohesive Process Zone (CPZ). A crack propagation of an existing single edge crack and its numerical implementation in DBEM, under constrained displacement, is analyzed using the maximum hoop stress criterion. Key Words: Boundary Element Method; Dual Boundary Element Method; Linear Elastic Fracture Mechanic; Cohesive Models; Propagation of Crack

Topics: Metodo dos elementos de contorno, Mecanica da fratura, Equações integrais, Analise numerica, Boundary element method, Dual boundary element method, Linear elastic fracture mechanic, Cohesive models, Propagation of cracks
Publisher: Universidade Estadual de Campinas. Faculdade de Engenharia Civil, Arquitetura e Urbanismo
Year: 2008
OAI identifier: oai:agregador.ibict.br.BDTD_UNICAMP:oai:unicamp.br:vtls000440003
Download PDF:
Sorry, we are unable to provide the full text but you may find it at the following location(s):
  • http://www.rcaap.pt/detail.jsp... (external link)
  • Suggested articles


    To submit an update or takedown request for this paper, please submit an Update/Correction/Removal Request.