Skip to main content
Article thumbnail
Location of Repository

Identificação não linear usando uma rede fuzzy wavelet neural network modificada

By José Medeiros de Araújo Júnior

Abstract

Nas últimas décadas, as redes neurais têm se estabelecido como uma das principais ferramentas para a identificação de sistemas não lineares. Entre os diversos tipos de redes utilizadas em identificação, uma que se pode destacar é a rede neural wavelet (ou Wavelet Neural Network - WNN). Esta rede combina as características de multirresolução da teoria wavelet com a capacidade de aprendizado e generalização das redes neurais, podendo fornecer modelos mais exatos do que os obtidos pelas redes tradicionais. Uma evolução das redes WNN consiste em combinar a estrutura neuro-fuzzyANFIS (Adaptive Network Based Fuzzy Inference System) com estas redes, gerando-se a estrutura Fuzzy Wavelet Neural Network - FWNN. Essa rede é muito similar às redes ANFIS, com a diferença de que os tradicionais polinômios presentes nos consequentes desta rede são substituídos por redes WNN. O presente trabalho propõe uma rede FWNN modificada para a identificação de sistemas dinâmicos não lineares. Nessa estrutura, somente funções waveletssão utilizadas nos consequentes. Desta forma, é possível obter uma simplificação da estrutura com relação a outras estruturas descritas na literatura, diminuindo o número de parâmetros ajustáveis da rede. Para avaliar o desempenho da rede FWNN com essa modificação, é realizada uma análise das características da rede, verificando-se as vantagens, desvantagens e o custo-benefício quando comparada com outras estruturas FWNNs. As avaliações são realizadas a partir da identificação de dois sistemas simulados tradicionalmente encontrados na literatura e um sistema real não linear, consistindo de um tanque de multisseções e não linear. Por fim, a rede foi utilizada para inferir valores de temperatura e umidade no interior de uma incubadora neonatal. A execução dessa análise baseia-se em vários critérios, tais como: erro médio quadrático, número de épocas de treinamento, número de parâmetros ajustáveis, variância do erro médio quadrático, entre outros. Os resultados encontrados evidenciam a capacidade de generalização da estrutura modificada, apesar da simplificação realizadaIn last decades, neural networks have been established as a major tool for the identification of nonlinear systems. Among the various types of networks used in identification, one that can be highlighted is the wavelet neural network (WNN). This network combines the characteristics of wavelet multiresolution theory with learning ability and generalization of neural networks usually, providing more accurate models than those ones obtained by traditional networks. An extension of WNN networks is to combine the neuro-fuzzy ANFIS (Adaptive Network Based Fuzzy Inference System) structure with wavelets, leading to generate the Fuzzy Wavelet Neural Network - FWNN structure. This network is very similar to ANFIS networks, with the difference that traditional polynomials present in consequent of this network are replaced by WNN networks. This paper proposes the identification of nonlinear dynamical systems from a network FWNN modified. In the proposed structure, functions only wavelets are used in the consequent. Thus, it is possible to obtain a simplification of the structure, reducing the number of adjustable parameters of the network. To evaluate the performance of network FWNN with this modification, an analysis of network performance is made, verifying advantages, disadvantages and cost effectiveness when compared to other existing FWNN structures in literature. The evaluations are carried out via the identification of two simulated systems traditionally found in the literature and a real nonlinear system, consisting of a nonlinear multi section tank. Finally, the network is used to infer values of temperature and humidity inside of a neonatal incubator. The execution of such analyzes is based on various criteria, like: mean squared error, number of training epochs, number of adjustable parameters, the variation of the mean square error, among others. The results found show the generalization ability of the modified structure, despite the simplification performe

Topics: Identificação de Sistemas. Inferência. Redes Neurais Artificiais. Teoria Wavelet. Redes Wavelet Neural Network. Redes Fuzzy Wavelet Neural Network, System Identification. Inference. Artificial Neural Networks. Wavelets. Wavelet Neural Network. Fuzzy Wavelet Neural Network, CNPQ::ENGENHARIAS::ENGENHARIA ELETRICA
Publisher: Universidade Federal do Rio Grande do Norte
Year: 2014
OAI identifier: oai:agregador.ibict.br.RI_UFRN:oai:repositorio:123456789/15249
Download PDF:
Sorry, we are unable to provide the full text but you may find it at the following location(s):
  • http://www.rcaap.pt/detail.jsp... (external link)
  • Suggested articles


    To submit an update or takedown request for this paper, please submit an Update/Correction/Removal Request.