Location of Repository

Optimal Inventory Control and Distribution Network Design of Multi-Echelon Supply Chains

By Mustafa Güller

Abstract

<h2>Optimale Bestandskontrolle und Gestaltung von Vertriebsnetzen mehrstufiger Supply Chains</h2> Aufgrund von Global Sourcing, Outsourcing der Produktion und Versorgung weltweiter Kunden innerhalb eines komplexen Vertriebsnetzes, in welchem mehrere Anlagen durch verschiedene Aktivitäten miteinander vernetzt sind, haben die meisten Unternehmen heutzutage immer komplexere Supply Chain-Netzwerke in einer immer unbeständiger werdenden Geschäftsumgebung. Mehr beteiligte Unternehmen in der Wertschöpfungskette bedeuten mehr Knoten und Verbindungen im Netzwerk. Folglich bringt die Globalisierung Komplexität und neue Herausforderungen, obwohl Unternehmen immer stärker von globalen Supply Chains profitieren. In einer solchen Geschäftsumgebung müssen sich die Akteure innerhalb der Supply Chain (SC) auf die effiziente Verwaltung und Koordination des Materialflusses im mehrstufigen System fokussieren, um diesen Herausforderungen handhaben zu können. In vielen Fällen beinhaltet die Supply Chain eines Unternehmens unterschiedliche Entscheidungen auf verschiedenen Planungsebenen, wie der Anlagenstandort, die Bestände und die Verkehrsmittel. Jede dieser Entscheidungen spielt eine bedeutende Rolle hinsichtlich der Gesamtleistung und das Verhältnis zwischen ihnen kann nicht ignoriert werden. Allerdings wurden diese Entscheidungen meist einzeln untersucht. In den letzten Jahren haben zahlreiche Studien die Bedeutung der Integration von beteiligten Entscheidungen in Supply Chains hervorgehoben. In diesem Zusammenhang sollten Entscheidungen über Anlagenstandort, Bestand und Verkehrsmittel gemeinsam in einem Optimierungsproblem des Vertriebsnetzes betrachtet werden, um genauere Ergebnisse für das Gesamtsystem zu erzeugen. Darüber hinaus ist ein effektives Management des Materialflusses über die gesamte Lieferkette hinweg, aufgrund der dynamischen Umgebung mit mehreren Zielen, ein schwieriges Problem. Die Lösungsansätze, die in der Vergangenheit verwendet wurden, um Probleme mehrstufiger Supply Chains zu lösen, basierten auf herkömmlichen Verfahren unter der Verwendung von analytischen Techniken. Diese sind jedoch nicht ausreichend, um die Dynamiken in Lieferketten zu bewältigen, aufgrund ihrer Unfähigkeit, mit den komplexen Interaktionen zwischen den Akteuren der Supply Chain umzugehen und das stochastische Verhalten zu repräsentieren, das in vielen Problemen der realen Welt besteht. Die Simulationsmodellierung ist in letzter Zeit zu einem wichtigen Instrument geworden, da ein analytisches Modell nicht in der Lage ist, ein System abzubilden, das sowohl der Variabilität als auch der Komplexität unterliegt. Allerdings erfordern Simulationen umfangreiche Laufzeiten, um möglichst viele Lösungen zu bewerten und die optimale Lösung für ein definiertes Problem zu finden. Um mit dieser Schwierigkeit umzugehen, muss das Simulationsmodell in Optimierungsalgorithmen integriert werden. In Erwiderung auf die oben genannten Herausforderungen, ist eines der Hauptziele dieser Arbeit, ein Modell und ein Lösungsverfahren für die optimale Gestaltung von Vertriebsnetzwerken integrierter Supply Chains vorzuschlagen, das die Beziehung zwischen den Entscheidungen der verschiedenen Planungsebenen berücksichtigt. Die Problemstellung wird mithilfe von Zielfunktionen formuliert, um die Kundenabdeckung zu maximieren, den maximalen Abstand von den Anlagenstandorten zu den Bedarfspunkten zu minimieren oder die Gesamtkosten zu minimieren. Um die optimale Anzahl, Kapazität und Lage der Anlagen zu bestimmen, kommen der Nondominated Sorting Genetic Algorithm II (NSGA-II) und der Quantum-based Particle Swarm Optimization Algorithm (QPSO) zum Einsatz, um dieses Optimierungsproblem im Spannungsfeld verschiedener Ziele zu lösen. Aufgrund der Komplexität mehrstufiger Systeme und der zugrunde liegenden Unsicherheiten, wurde die Optimierung von Beständen über die gesamte Lieferkette hinweg zur wesentlichen Herausforderung, um die Kosten zu reduzieren und die Serviceanforderungen zu erfüllen. In diesem Zusammenhang ist das andere Ziel dieser Arbeit die Darstellung eines simulationsbasierten Optimierungs-Frameworks, in dem die Simulation, basierend auf der objektorientierten Programmierung, entwickelt wird und die Optimierung metaheuristische Techniken mit unterschiedlichen Kriterien, wie NSGA-II und MOPOSO, verwendet. Insbesondere das geplante Framework regt einen großen Nutzen an, sowohl für das Bestandsoptimierungsproblem in mehrstufigen Supply Chains, als auch für andere Logistikprobleme.Today, most companies have more complex supply chain networks in a more volatile business environment due to global sourcing, outsourcing of production and serving customers all over the world with a complex distribution network that has several facilities linked by various activities. More companies involved within the value chain, means more nodes and links in the network. Therefore, globalization brings complexities and new challenges as enterprises increasingly benefit from global supply chains. In such a business environment, Supply Chain (SC) members must focus on the efficient management and coordination of material flow in the multi-echelon system to handle with these challenges. In many cases, the supply chain of a company includes various decisions at different planning levels, such as facility location, inventory and transportation. Each of these decisions plays a significant role in the overall performance and the relationship between them cannot be ignored. However, these decisions have been mostly studied individually. In recent years, numerous studies have emphasized the importance of integrating the decisions involved in supply chains. In this context, facility location, inventory and transportation decisions should be jointly considered in an optimization problem of distribution network design to produce more accurate results for the whole system. Furthermore, effective management of material flow across a supply chain is a difficult problem due to the dynamic environment with multiple objectives. In the past, the majority of the solution approaches used to solve multi-echelon supply chain problems were based on conventional methods using analytical techniques. However, they are insufficient to cope with the SC dynamics because of the inability to handle to the complex interactions between the SC members and to represent stochastic behaviors existing in many real world problems. Simulation modeling has recently become a major tool since an analytical model is unable to formulate a system that is subject to both variability and complexity. However, simulations require extensive runtime to evaluate many feasible solutions and to find the optimal one for a defined problem. To deal with this problem, simulation model needs to be integrated in optimization algorithms. In response to the aforementioned challenges, one of the primary objectives of this thesis is to propose a model and solution method for the optimal distribution network design of an integrated supply chain that takes into account the relationship between decisions at the different levels of planning horizon. The problem is formulated with objective functions to maximize the customer coverage or minimize the maximal distance from the facilities to the demand points and minimize the total cost. In order to find optimal number, capacity and location of facilities, the Nondominated Sorting Genetic Algorithm II (NSGA-II) and Quantum-based Particle Swarm Optimization Algorithm (QPSO) are employed for solving this multiobjective optimization problem. Due to the complexities of multi-echelon system and the underlying uncertainty, optimizing inventories across the supply chain has become other major challenge to reduce the cost and to meet service requirements. In this context, the other aim of this thesis is to present a simulation-based optimization framework, in which the simulation is developed based on the object-oriented programming and the optimization utilizes multi-objective metaheuristic techniques, such as the well-known NSGA-II and MOPSO. In particular, the proposed framework suggests a great utility for the inventory optimization problem in multi-echelon supply chains, as well as for other logistics-related problems

Topics: 600 Technik, Medizin, angewandte Wissenschaften » 620 Ingenieurwissenschaften, Fakultät für Ingenieurwissenschaften » Maschinenbau und Verfahrenstechnik
Year: 2016
OAI identifier: oai:duepublico.uni-duisburg-essen.de:41343

Suggested articles

Preview


To submit an update or takedown request for this paper, please submit an Update/Correction/Removal Request.