Breast cancer 1 (BRCA1)-deficient embryos develop normally but are more susceptible to ethanol-initiated DNA damage and embryopathies

Abstract

The breast cancer 1 (brca1) gene is associated with breast and ovarian cancers, and heterozygous (+/−) brca1 knockout progeny develop normally, suggesting a negligible developmental impact. However, our results show BRCA1 plays a broader biological role in protecting the embryo from oxidative stress. Sox2-promoted Cre-expressing hemizygous males were mated with floxed brca1 females, and gestational day 8 +/− brca1 conditional knockout embryos with a 28% reduction in protein expression were exposed in culture to the reactive oxygen species (ROS)-initiating drug ethanol (EtOH). Untreated +/− brca1-deficient embryos developed normally, but when exposed to EtOH exhibited increased levels of oxidatively damaged DNA, measured as 8-oxo-2'-deoxyguanosine, γH2AX, which is a marker of DNA double strand breaks that can result from 8-oxo-2'-deoxyguanosine, formation, and embryopathies at EtOH concentrations that did not affect their brca1-normal littermates. These results reveal that even modest BRCA1 deficiencies render the embryo more susceptible to drug-enhanced ROS formation, and corroborate a role for DNA oxidation in the mechanism of EtOH teratogenesis

Similar works

Full text

thumbnail-image

Directory of Open Access Journals

redirect
Last time updated on 09/08/2016

This paper was published in Directory of Open Access Journals.

Having an issue?

Is data on this page outdated, violates copyrights or anything else? Report the problem now and we will take corresponding actions after reviewing your request.