2,4,6-trinitrotoluene reduction by hydrogenase in Clostridium acetobutylicum

Abstract

Unique genetic modifications to C. acetobutylicum altered the level of hydrogenase expression, allowing study of the resulting effects on the 2,4,6-trinitrotoluene (TNT) reduction rates to be possible. A strain designed to over-express the hydrogenase gene resulted in maintained TNT reduction during late growth phases when it is not typically observed. Strains exhibiting under-expression of hydrogenase produced slower TNT rates of reduction correlating to the expected inhibition of each strain type. Hydrogenase activity, measured by hydrogen production, in Clostridium acetobutylicum correlates strongly (R2 = 0.89) to TNT reduction rates. Indications suggested that hydrogenase potentially played an integral role in catalysis of TNT transformation by reducing its nitro substituents to the corresponding hydroxylamines. A mechanistic pathway is proposed by which this transformation takes place and may enhance the understanding of commonly found hydrogenases in other microorganisms and their ability to transform nitroaromatic compounds

Similar works

Full text

thumbnail-image

DSpace at Rice University

Full text is not available
oai:scholarship.rice.edu:1911/17632Last time updated on 6/11/2012

This paper was published in DSpace at Rice University.

Having an issue?

Is data on this page outdated, violates copyrights or anything else? Report the problem now and we will take corresponding actions after reviewing your request.