10.1007/978-3-0348-8266-8_54

Network Traffic Modeling using a Multifractal Wavelet Model

Abstract

Conference PaperIn this paper, we describe a new multiscale model for characterizing positive-valued and long-range dependent data. The model uses the Haar wavelet transform and puts a constraint on the wavelet coefficients to guarantee positivity, which results in a swift O(N) algorithm to synthesize N-point data sets. We elucidate our model's ability to capture the covariance structure of real data, study its multifractal properties, and derive a scheme for matching it to real data observations. We demonstrate the model's utility by applying it to network traffic synthesis. The flexibility and accuracy of the model and fitting procedure result in a close match to the real data statistics (variance-time plots) and queuing behavior

Similar works

Full text

thumbnail-image

DSpace at Rice University

Provided original full text link
oai:scholarship.rice.edu:1911/20273Last time updated on 6/11/2012

This paper was published in DSpace at Rice University.

Having an issue?

Is data on this page outdated, violates copyrights or anything else? Report the problem now and we will take corresponding actions after reviewing your request.