Article thumbnail

Identification and Structural Analysis of a Novel Carboxysome Shell Protein with Implications for Metabolite Transport

By Michael G. Klein, Peter Zwart, Sarah C. Bagby, Fei Cai, Sallie (Penny) Chisholm, Sabine Heinhorst, Gordon C. Cannon and Cheryl A. Kerfeld

Abstract

Bacterial microcompartments (BMCs) are polyhedral bodies, composed entirely of proteins, that function as organelles in bacteria; they promote subcellular processes by encapsulating and co-localizing targeted enzymes with their substrates. The best-characterized BMC is the carboxysome, a central part of the carbon-concentrating mechanism that greatly enhances carbon fixation in cyanobacteria and some chemoautotrophs. Here we report the first structural insights into the carboxysome of Prochlorococcus, the numerically dominant cyanobacterium in the world's oligotrophic oceans. Bioinformatic methods, substantiated by analysis of gene expression data, were used to identify a new carboxysome shell component, CsoS1D, in the genome of Prochlorococcus strain MED4; orthologs were subsequently found in all cyanobacteria. Two independent crystal structures of Prochlorococcus MED4 CsoS1D reveal three features not seen in any BMC-domain protein structure solved to date. First, CsoS1D is composed of a fused pair of BMC domains. Second, this double-domain protein trimerizes to form a novel pseudohexameric building block for incorporation into the carboxysome shell, and the trimers further dimerize, forming a two-tiered shell building block. Third, and most strikingly, the large pore formed at the 3-fold axis of symmetry appears to be gated. Each dimer of trimers contains one trimer with an open pore and one whose pore is obstructed due to side-chain conformations of two residues that are invariant among all CsoS1D orthologs. This is the first evidence of the potential for gated transport across the carboxysome shell and reveals a new type of building block for BMC shells.Gordon and Betty Moore FoundationNational Science Foundation (U.S.)United States. Dept. of EnergyNational Science Foundation (U.S.) (Grant No. MCB-0851094)National Science Foundation (U.S.) (Grant No. MCB-0818680)National Science Foundation (U.S.) (Grant No. DMR-0213883)United States. Dept. of Energy (DE-AC52-07NA27344)United States. Dept. of Energy (DE-AC02-05CH11231

Publisher: 'Elsevier BV'
Year: 2009
DOI identifier: 10.1016/j.jmb.2009.03.056
OAI identifier: oai:dspace.mit.edu:1721.1/61355
Provided by: DSpace@MIT
Journal:
Download PDF:
Sorry, we are unable to provide the full text but you may find it at the following location(s):
  • http://hdl.handle.net/1721.1/6... (external link)
  • Suggested articles


    To submit an update or takedown request for this paper, please submit an Update/Correction/Removal Request.