The role of N-linked glycosylation on the structure and function of somatic angiotensin-converting enzyme

Abstract

Angiotensin converting enzyme (ACE) is a key regulator of blood pressure and comprised of two homologous domains (N- and C-domain), both of which are glycosylated. N-linked glycosylation is important for the processing, expression and stability of ACE, but it interferes with protein crystallization. Previously, the N-glycan site occupancy required for the expression and stability of the individual domains of ACE was determined using minimally glycosylated (MG) N- and C-domain isoforms. However the role of glycosylation in the structure and function of the full-length somatic ACE (sACE) has remained elusive. A novel MG-sACE mutant, comprised of previously characterized MG N- and C-domains was generated. Unfortunately, the protein was susceptible to limited proteolysis in the interdomain linker region, suggesting that key glycans might shield the linker region from proteolysis. Furthermore, a loss in expression of MG-sACE was observed. These observations prompted the investigation of the effect of N-glycosylation on protection from inter-domain linker proteolysis, expression and overall stability of sACE. These aims were addressed by generating a panel of sACE glycosylation mutants

Similar works

This paper was published in Cape Town University OpenUCT.

Having an issue?

Is data on this page outdated, violates copyrights or anything else? Report the problem now and we will take corresponding actions after reviewing your request.