Skip to main content
Article thumbnail
Location of Repository

Responses of soil microeukaryotic communities to short-term fumigation-incubation revealed by MiSeq amplicon sequencing

By Lin eChen, Jianming eXu, Youzhi eFeng, Juntao eWang, Yongjie eYu and Philip C. Brookes


In soil microbiology, there is a ‘paradox’ of soil organic carbon (SOC) mineralization, which is that even though chloroform fumigation destroys majority of the soil microbial biomass, SOC mineralization continues at the same rate as in the non-fumigated soil during the incubation period. Soil microeukaryotes as important SOC decomposers, however, their community-level responses to chloroform fumigation are not well understood. Using the 18S rRNA gene amplicon sequencing, we analyzed the composition, diversity and C-metabolic functions of a grassland soil and an arable soil microeukaryotic community in response to fumigation followed by a 30-day incubation. The grassland and arable soil microeukaryotic communities were dominated by the fungal Ascomycota (80.5–93.1% of the fungal sequences), followed by the protistan Cercozoa and Apicomplexa. In the arable soil fungal community, the predominance of the class Sordariomycetes was replaced by the class Eurotiomycetes after fumigation at days 7 and 30 of the incubation. Fumigation changed the microeukaryotic α-diversity in the grassland soil at days 0 and 7, and β-diversity in the arable soil at days 7 and 30. Network analysis indicated that after fumigation fungi were important groups closely related to other taxa. Most phylotypes (especially Sordariomycetes, Dothideomycetes, Coccidia and uncultured Chytridiomycota) were inhibited, and only a few were positively stimulated by fumigation. Despite the inhibited Sordariomycetes, the fumigated communities mainly consisted of Eurotiomycetes and Sordariomycetes (21.9% and 36.5% relative frequency, respectively), which are able to produce hydrolytic enzymes associated with SOC mineralization. Our study suggests that fumigation not only decreases biomass size, but modulates the composition and diversity of the soil microeukaryotic communities, which are capable of driving SOC mineralization by release of hydrolytic enzymes during short-term fumigation-incubation

Topics: Enzymes, Fumigation, Fungi, Network analysis, protist, Microbiology, QR1-502
Publisher: Frontiers Media S.A.
Year: 2015
DOI identifier: 10.3389/fmicb.2015.01149
OAI identifier:
Download PDF:
Sorry, we are unable to provide the full text but you may find it at the following location(s):
  • (external link)
  • (external link)
  • (external link)
  • Suggested articles

    To submit an update or takedown request for this paper, please submit an Update/Correction/Removal Request.