Location of Repository

Optimal hemodynamic response model for functional near-infrared spectroscopy

By Muhammad Ahmad Kamran, Myung-Yung eJeong and Malik eMannan

Abstract

Functional near-infrared spectroscopy (fNIRS) is an emerging non-invasive brain imaging technique and measures brain activities by means of near-infrared light of 650-950 nm wavelengths. The cortical hemodynamic response (HR) differs in attributes at different brain regions and on repetition of trials, even if the experimental paradigm is kept exactly the same. Therefore, an HR model that can estimate such variations in the response is the objective of this research. The canonical hemodynamic response function (cHRF) is modeled by using two Gamma functions with six unknown parameters. The HRF model is supposed to be linear combination of HRF, baseline and physiological noises (amplitudes and frequencies of physiological noises are supposed to be unknown). An objective function is developed as a square of the residuals with constraints on twelve free parameters. The formulated problem is solved by using an iterative optimization algorithm to estimate the unknown parameters in the model. Inter-subject variations in HRF and physiological noises have been estimated for better cortical functional maps. The accuracy of the algorithm has been verified using ten real and fifteen simulated data sets. Ten healthy subjects participated in the experiment and their HRF for finger-tapping tasks have been estimated and analyzed. The statistical significance of the estimated activity strength parameters has been verified by employing statistical analysis, i.e., (t-value >tcritical and p-value < 0.05)

Topics: functional near-infrared spectroscopy, Brain Imaging., Optimization algorithm, Hemodynamic Response Model, Physiological Noises, Neurosciences. Biological psychiatry. Neuropsychiatry, RC321-571
Publisher: Frontiers Media S.A.
Year: 2015
DOI identifier: 10.3389/fnbeh.2015.00151
OAI identifier: oai:doaj.org/article:8dba7b02869248fd94ec701310fef8a2
Journal:
Download PDF:
Sorry, we are unable to provide the full text but you may find it at the following location(s):
  • https://doaj.org/toc/1662-5153 (external link)
  • http://journal.frontiersin.org... (external link)
  • https://doaj.org/article/8dba7... (external link)
  • Suggested articles


    To submit an update or takedown request for this paper, please submit an Update/Correction/Removal Request.