Skip to main content
Article thumbnail
Location of Repository

Cerebellar transcriptional alterations with Purkinje cell dysfunction and loss in mice lacking PGC-1α

By Elizabeth K Lucas, Elizabeth K Lucas, Courtney S. Reid, Laura J. McMeekin, Sarah E. Dougherty, Sarah E. Dougherty, Candace L. Floyd and Rita Marie Cowell

Abstract

Alterations in the expression and activity of the transcriptional coactivator peroxisome proliferator-activated receptor γ coactivator-1α (ppargc1a or PGC-1α) have been reported in multiple movement disorders, yet it is unclear how a lack of PGC-1α impacts transcription and function of the cerebellum, a region with high PGC-1α expression. We show here that mice lacking PGC-1α exhibit ataxia in addition to the previously described deficits in motor coordination. Using q-RT-PCR in cerebellar homogenates from PGC-1α -/- mice, we measured expression of 37 microarray-identified transcripts upregulated by PGC-1α in SH-SY5Y neuroblastoma cells with neuroanatomical overlap with PGC-1α or parvalbumin (PV), a calcium buffer highly expressed by Purkinje cells. We found significant reductions in transcripts with synaptic (complexin1, Cplx1; Pacsin2), structural (neurofilament heavy chain, Nefh), and metabolic (isocitrate dehydrogenase 3a, Idh3a; neutral cholesterol ester hydrolase 1, Nceh1; pyruvate dehydrogenase alpha 1, Pdha1; phytanoyl-CoA hydroxylase, Phyh; ubiquinol-cytochrome c reductase, Rieske iron-sulfur polypeptide 1, Uqcrfs1) functions. Using conditional deletion of PGC-1α in PV-positive neurons, we determined that 50% of PGC-1α expression and a reduction in a subset of these transcripts could be explained by its concentration in PV-positive neuronal populations in the cerbellum. To determine whether there were functional consequences associated with these changes, we conducted stereological counts and spike rate analysis in Purkinje cells, a cell type rich in PV, from PGC-1α -/- mice. We observed a significant loss of Purkinje cells by six weeks of age, and the remaining Purkinje cells exhibited a 50% reduction in spike rate. Together, these data highlight the complexity of PGC-1α’s actions in the central nervous system and suggest that dysfunction in multiple cell types contribute to motor deficits in the context of PGC-1α deficiency

Topics: Ataxia, Cerebellum, Friedreich Ataxia, Refsum Disease, Stereology, PPARGC1A, Neurosciences. Biological psychiatry. Neuropsychiatry, RC321-571
Publisher: Frontiers Media S.A.
Year: 2015
DOI identifier: 10.3389/fncel.2014.00441
OAI identifier: oai:doaj.org/article:b64b5c78128f4cc68a16ce6b7928d05d
Journal:
Download PDF:
Sorry, we are unable to provide the full text but you may find it at the following location(s):
  • https://doaj.org/toc/1662-5102 (external link)
  • http://journal.frontiersin.org... (external link)
  • https://doaj.org/article/b64b5... (external link)
  • Suggested articles


    To submit an update or takedown request for this paper, please submit an Update/Correction/Removal Request.